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PREFACE

An introductory course on analog and digital communications is fundamental to the under-
graduate program in electrical engineering. This course is usually offered at the junior level.
Typically, it is assumed that the student has a background in calculus, electronics, signals
and systems, and possibly probability theory.

Bearing in mind the introductory nature of this course, a textbook recommended for
the course must be easy to read, accurate, and contain an abundance of insightful exam-
ples, problems, and computer experiments. These objectives of the book are needed to
expedite learning the fundamentals of communication systems at an introductory level and
in an effective manner. This book has been written with all of these objectives in mind.

Given the mathematical nature of communication theory, it is rather easy for the
reader to lose sight of the practical side of communication systems. Throughout the book,
we have made a special effort not to fall into this trap. We have done this by moving
through the treatment of the subject in an orderly manner, always trying to keep the math-
ematical treatment at an easy-to-grasp level and also pointing out practical relevance of the
theory wherever it is appropriate to do so.

Structural Philosophy of the Book

To facilitate and reinforce learning, the layout and format of the book have been
structured to do the following:
¢ Provide motivation to read the book and learn from it.
¢ Emphasize basic concepts from a “systems” perspective and do so in an orderly manner.

® Wherever appropriate, include examples and computer experiments in each chapter to illus-
trate application of the pertinent theory.

¢ Provide drill problems following the discussion of fundamental concepts to help the user
of the book verify and master the concepts under discussion.

¢ Provide additional end-of-chapter problems, some of an advanced nature, to extend the
theory covered in the text.

Organization of the book

1. Motivation Before getting deeply involved in the study of analog and digital communi-
cations, it is imperative that the user of the book be motivated to use the book and learn
from it. To this end, Chapter 1 begins with a historical background of communication sys-
tems and important applications of the subject.

2. Modulation Theory Digital communication has overtaken analog communications as the
dominant form of communications. Although, indeed, these two forms of communications
work in different ways, modulation theory is basic to them both. Moreover, it is easiest to
understand this important subject by first covering its fundamental concepts applied to ana-
log communications and then moving on to digital communications. Moreover, amplitude
modulation is simpler than angle modulation to present. One other highly relevant point is
the fact that to understand modulation theory, it is important that Fourier theory be mas-
tered first. With these points in mind, Chapters 2 through 7 are organized as follows:
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¢ Chapter 2 is devoted to reviewing the Fourier representation of signals and systems.

¢ Chapters 3 and 4 are devoted to analog communications, with Chapter 3 covering ampli-
tude modulation and Chapter 4 covering angle modulation.

¢ Chapter 5 on pulse modulation covers the concepts pertaining to the transition from ana-
log to digital communications.

e Chapters 6 and 7 are devoted to digital communications, with Chapter 6 covering base-
band data transmission and Chapter 7 covering band-pass data transmission.

Probability Theory and Signal Detection  Just as Fourier analysis is fundamental to mod-
ulation theory, probability theory is fundamental to signal detection and receiver performance
evaluation in the presence of additive noise. Since probability theory is not critical to the
understanding of modulation, we have purposely delayed the review of probability theory,
random signals, and noise until Chapter 8. Then, with a good understanding of modulation
theory applied to analog and digital communications and relevant concepts of probability
theory and probabilistic models at hand, the stage is set to revisit analog and digital com-
munication receivers, as summarized here:

e Chapter 9 discusses noise in analog communications.

e Chapter 10 discusses noise in digital communications. Because analog and digital com-
munications operate in different ways, it is natural to see some fundamental differences
in treating the effects of noise in these two chapters.

Noise The introductory study of analog and digital communications is completed in Chap-
ter 11. This chapter illustrates the roles of modulation and noise in communication systems
by doing four things:

¢ First, the physical sources of noise, principally, thermal noise and shot noise, are described.

¢ Second, the metrics of noise figure and noise temperature are introduced.

e Third, how propagation affects the signal strength in satellite and terrestrial wireless com-
munications is explained.

¢ Finally, we show how the signal strength and noise calculations may be combined to pro-
vide an estimate of the signal-to-noise ratio, the fundamental figure of merit for commu-
nication systems.

Theme Examples In order to highlight important practical applications of communication
theory, theme examples are included wherever appropriate. The examples are drawn from
the worlds of both analog and digital communications.

Appendices To provide back-up material for the text, eight appendices are included at the
end of the book, which cover the following material in the order presented here:

e Power ratios and the decibel

e Fourier series

¢ Bessel functions

e The Q-function and its relationship to the error function
¢ Schwarz’s inequality

e Mathematical tables
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e Matlab scripts for computer experiments to problems in Chapters 7-10
e Answers to drill problems

7. Footnotes, included throughout the book, are provided to help the interested reader to pur-
sue selected references for learning advanced material.

8. Auxiliary Material The book is essentially self-contained. A glossary of symbols and a
bibliography are provided at the end of the book. As an aid to the teacher of the course using
the book, a detailed Solutions Manual for all the problems, those within the text and those
included at the end of chapters, will be made available through the publisher: John Wiley
and Sons.

How to Use the Book

The book can be used for an introductory course on analog and digital communications
in different ways, depending on the background of the students and the teaching interests
and responsibilities of the professors concerned. Here are two course models of how this
may be done:

COURSE MODEL A: FuLL TwWoO-SEMESTER COURSE

(A.1) The first semester course on modulation theory consists of Chapters 2 through 7, inclu-
sive.

(A.2) The second semester course on noise in communication systems consists of Chapters 8
through 11, inclusive.

COURSE MODEL B: TWO SEMESTER COURSES, ONE ON ANALOG AND THE
OTHER ON DIGITAL

(B.1) The first course on analog communications begins with review material from Chapter 2
on Fourier analysis, followed by Chapter 3 on amplitude modulation and Chapter 4 on
angle modulation, then proceeds with a review of relevant parts of Chapter 8 on noise,
and finally finishes with Chapter 9 on noise in analog communications.

(B.2) The second course on digital communications starts with Chapter 5 on pulse modulation,
followed by Chapter 6 on baseband data transmission and Chapter 7 on digital modu-
lation techniques, then proceeds with review of relevant aspects of probability theory in
Chapter 8, and finally finishes with Chapter 10 on noise in digital communications.

Simon Haykin
Ancaster, Ontario, Canada

Michael Moher
Ottawa, Ontario, Canada
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CHAPTER 1

INTRODUCTION

“To understand a science it is necessary to know its history”
—Auguste Comte (1798-1857)

1.1 Historical Background

With this quotation from Auguste Comte in mind, we begin this introductory study of
communication systems with a historical account of this discipline that touches our daily
lives in one way or another.! Each subsection in this section focuses on some important and
related events in the historical evolution of communication.

Telegraph

The telegraph was perfected by Samuel Morse, a painter. With the words “What hath
God wrought,” transmitted by Morse’s electric telegraph between Washington, D.C., and
Baltimore, Maryland, in 1844, a completely revolutionary means of real-time, long-dis-
tance communications was triggered. The telegraph, ideally suited for manual keying, is the
forerunner of digital communications. Specifically, the Morse code is a variable-length code
using an alphabet of four symbols: a dot, a dash, a letter space, and a word space; short
sequences represent frequent letters, whereas long sequences represent infrequent letters.

Radio

In 1864, James Clerk Maxwell formulated the electromagnetic theory of light and pre-
dicted the existence of radio waves; the underlying set of equations bears his name. The exis-
tence of radio waves was confirmed experimentally by Heinrich Hertz in 1887. In 1894,
Oliver Lodge demonstrated wireless communication over a relatively short distance (150
yards). Then, on December 12, 1901, Guglielmo Marconi received a radio signal at Signal
Hill in Newfoundland; the radio signal had originated in Cornwall, England, 1700 miles
away across the Atlantic. The way was thereby opened toward a tremendous broadening
of the scope of communications. In 1906, Reginald Fessenden, a self-educated academic,
made history by conducting the first radio broadcast.

In 1918, Edwin H. Armstrong invented the superbeterodyne radio receiver; to this day,
almost all radio receivers are of this type. In 1933, Armstrong demonstrated another rev-
olutionary concept—namely, a modulation scheme that he called frequency modulation
(FM). Armstrong’s paper making the case for FM radio was published in 1936.

I'This historical background is adapted from Haykin’s book (2001).
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Telephone

In 1875, the telephone was invented by Alexander Graham Bell, a teacher of the deaf.
The telephone made real-time transmission of speech by electrical encoding and replication
of sound a practical reality. The first version of the telephone was crude and weak, enabling
people to talk over short distances only. When telephone service was only a few years old,
interest developed in automating it. Notably, in 1897, A. B. Strowger, an undertaker from
Kansas City, Missouri, devised the automatic step-by-step switch that bears his name. Of
all the electromechanical switches devised over the years, the Strowger switch was the most
popular and widely used.

Electronics

In 1904, John Ambrose Fleming invented the vacuum-tube diode, which paved the
way for the invention of the vacuum-tube triode by Lee de Forest in 1906. The discovery
of the triode was instrumental in the development of transcontinental telephony in 1913
and signaled the dawn of wireless voice communications. Indeed, until the invention and
perfection of the transistor, the triode was the supreme device for the design of electronic
amplifiers.

The transistor was invented in 1948 by Walter H. Brattain, John Bardeen, and William
Shockley at Bell Laboratories. The first silicon integrated circuit (IC) was produced by
Robert Noyce in 1958. These landmark innovations in solid-state devices and integrated
circuits led to the development of very-large-scale integrated (VLSI) circuits and single-
chip microprocessors, and with them the nature of signal processing and the telecommu-
nications industry changed forever.

Television

The first all-electronic television system was demonstrated by Philo T. Farnsworth in
1928, and then by Vladimir K. Zworykin in 1929. By 1939, the British Broadcasting Cor-
poration (BBC) was broadcasting television on a commercial basis.

Digital Communications

In 1928, Harry Nyquist published a classic paper on the theory of signal transmis-
sion in telegraphy. In particular, Nyquist developed criteria for the correct reception of
telegraph signals transmitted over dispersive channels in the absence of noise. Much of
Nyquist’s early work was applied later to the transmission of digital data over dispersive
channels.

In 1937, Alex Reeves invented pulse-code modulation (PCM) for the digital encod-
ing of speech signals. The technique was developed during World War II to enable the
encryption of speech signals; indeed, a full-scale, 24-channel system was used in the field
by the United States military at the end of the war. However, PCM had to await the dis-
covery of the transistor and the subsequent development of large-scale integration of cir-
cuits for its commercial exploitation.

The invention of the transistor in 1948 spurred the application of electronics to
switching and digital communications. The motivation was to improve reliability, increase
capacity, and reduce cost. The first call through a stored-program system was placed in
March 1958 at Bell Laboratories, and the first commercial telephone service with digital
switching began in Morris, Illinois, in June 1960. The first T-1 carrier system transmission
was installed in 1962 by Bell Laboratories.
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In 1943, D. O. North devised the matched filter for the optimum detection of a known
signal in additive white noise. A similar result was obtained in 1946 independently by
J. H. Van Vleck and D. Middleton, who coined the term matched filter.

In 1948, the theoretical foundations of digital communications were laid by Claude
Shannon in a paper entitled “A Mathematical Theory of Communication.” Shannon’s
paper was received with immediate and enthusiastic acclaim. It was perhaps this response
that emboldened Shannon to amend the title of his paper to “The Mathematical Theory
of Communications” when it was reprinted a year later in a book co-authored with War-
ren Weaver. It is noteworthy that prior to the publication of Shannon’s 1948 classic paper,
it was believed that increasing the rate of information transmission over a channel would
increase the probability of error. The communication theory community was taken by sur-
prise when Shannon proved that this was not true, provided the transmission rate was
below the channel capacity.

Computer Networks

During the period 1943 to 1946, the first electronic digital computer, called the
ENIAC, was built at the Moore School of Electrical Engineering of the University of
Pennsylvania under the technical direction of J. Presper Eckert, Jr., and John W. Mauchly.
However, John von Neumann’s contributions were among the earliest and most funda-
mental to the theory, design, and application of digital computers, which go back to the
first draft of a report written in 1945. Computers and terminals started communicating
with each other over long distances in the early 1950s. The links used were initially
voice-grade telephone channels operating at low speeds (300 to 1200 b/s). Various fac-
tors have contributed to a dramatic increase in data transmission rates; notable among
them are the idea of adaptive equalization, pioneered by Robert Lucky in 19635, and effi-
cient modulation techniques, pioneered by G. Ungerboeck in 1982. Another idea widely
employed in computer communications is that of automatic repeat-request (ARQ). The
ARQ method was originally devised by H. C. A. van Duuren during World War II and
published in 1946. It was used to improve radio-telephony for telex transmission over
long distances.

From 1950 to 1970, various studies were made on computer networks. However,
the most significant of them in terms of impact on computer communications was the
Advanced Research Projects Agency Network (ARPANET), first put into service in 1971.
The development of ARPANET was sponsored by the Advanced Research Projects Agency
of the U. S. Department of Defense. The pioneering work in packet switching was done on
ARPANET. In 1985, ARPANET was renamed the Internet. The turning point in the evo-
lution of the Internet occurred in 1990 when Tim Berners-Lee proposed a hypermedia soft-
ware interface to the Internet, which he named the World Wide Web. In the space of only
about two years, the Web went from nonexistence to worldwide popularity, culminating
in its commercialization in 1994, We may explain the explosive growth of the Internet by
offering these reasons:

Before the Web exploded into existence, the ingredients for its creation were already
in place. In particular, thanks to VLSI, personal computers (PCs) had already become
ubiquitous in homes throughout the world, and they were increasingly equipped with
modems for interconnectivity to the outside world.

For about two decades, the Internet had grown steadily (albeit within a confined
community of users), reaching a critical threshold of electronic mail and file transfer.
Standards for document description and transfer, hypertext markup language
(HTML), and hypertext transfer protocol (HTTP) had been adopted.
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Thus, everything needed for creating the Web was already in place except for two critical
ingredients: a simple user interface and a brilliant service concept.

Satellite Communications

In 1955, John R. Pierce proposed the use of satellites for communications. This pro-
posal was preceded, however, by an earlier paper by Arthur C. Clark that was published in
19435, also proposing the idea of using an Earth-orbiting satellite as a relay point for com-
munication between two Earth stations. In 1957, the Soviet Union launched Sputnik I, which
transmitted telemetry signals for 21 days. This was followed shortly by the launching of
Explorer I by the United States in 1958, which transmitted telemetry signals for about five
months. A major experimental step in communications satellite technology was taken with
the launching of Telstar I from Cape Canaveral on July 10, 1962. The Telstar satellite was
built by Bell Laboratories, which had acquired considerable knowledge from pioneering
work by Pierce. The satellite was capable of relaying TV programs across the Atlantic; this
was made possible only through the use of maser receivers and large antennas.

Optical Communications

The use of optical means (e.g., smoke and fire signals) for the transmission of infor-
mation dates back to prehistoric times. However, no major breakthrough in optical com-
munications was made until 1966, when K. C. Kao and G. A. Hockham of Standard
Telephone Laboratories, U. K., proposed the use of a clad glass fiber as a dielectric wave-
guide. The laser (an acronym for light amplification by stimulated emission of radiation)
had been invented and developed in 1959 and 1960. Kao and Hockham pointed out that
(1) the attenuation in an optical fiber was due to impurities in the glass, and (2) the intrin-
sic loss, determined by Rayleigh scattering, is very low. Indeed, they predicted that a loss
of 20 dB/km should be attainable. This remarkable prediction, made at a time when the
power loss in a glass fiber was about 1000 dB/km, was to be demonstrated later. Nowa-
days, transmission losses as low as 0.1 dB/km are achievable.

The spectacular advances in microelectronics, digital computers, and lightwave sys-
tems that we have witnessed to date, and that will continue into the future, are all respon-
sible for dramatic changes in the telecommunications environment. Many of these changes
are already in place, and more changes will occur over time.

1.2 Applications

The historical background of Section 1.1 touches many of the applications of communi-
cation systems, some of which are exemplified by the telegraph that has come and gone,
while others exemplified by the Internet are of recent origin. In what follows, we will focus
on radio, communication networks exemplified by the telephone, and the Internet, which
dominate the means by which we communicate in one of two basic ways or both, as sum-
marized here:

Broadcasting, which involves the use of a single powerful transmitter and numerous
receivers that are relatively inexpensive to build. In this class of communication sys-
tems, information-bearing signals flow only in one direction, from the transmitter to
each of the receivers out there in the field.

Point-to-point communications, in which the communication process takes place
over a link between a single transmitter and a single receiver. In this second class of
communication systems, there is usually a bidirectional flow of information-bearing
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FIGURE 1.1 Elements of a communication system.

signals, which, in effect, requires the use of a transmitter and receiver (i.e., trans-
ceiver) at each end of the link.

The block diagram of Fig. 1.1 highlights the basic composition of a communication
system. The transmitter, at some location in space, converts the message signal produced
by a source of information into a form suitable for transmission over the channel. The
channel, in turn, transports the message signal and delivers it to the receiver at some other
location in space. However, in the course of transmission over the channel, the signal is dis-
torted due to channel imperfections. Moreover, noise and interfering signals (originating
from other sources) are added to the channel output, with the result that the received sig-
nal is a corrupted version of the transmitted signal. The receiver has the task of operating
on the received signal so as to produce an estimate of the original message signal for the
user of information. We say an “estimate” here because of the unavoidable deviation, how-
ever small, of the receiver output compared to the transmitter input, the deviation being
attributed to channel imperfections, noise, and interference.

RADIO

Speaking in a generic sense, the radio embodies the means for broadcasting as well as point-
to-point communications, depending on how it is used.

The AM radio and FM radio are both so familiar to all of us. (AM stands for ampli-
tude modulation, and FM stands for frequency modulation.) The two of them are built in
an integrated form inside a single unit, and we find them in every household and installed
in every car. Via radio we listen to news about local, national, and international events, com-
mentaries, music, and weather forecasts, which are transmitted from broadcasting stations
that operate in our neighborhood. Traditionally, AM radio and FM radio have been built
using analog electronics. However, thanks to the ever-increasing improvements and cost-
effectiveness of digital electronics, digital radio (in both AM and FM forms) is already in
current use.

Radio transmits voice by electrical signals. Television, which operates on similar elec-
tromagnetic and communication-theoretic principles, also transmits visual images by elec-
trical signals. A voice signal is naturally defined as a one-dimensional function of time,
which therefore lends itself readily to signal-processing operations. In contrast, an image
with motion is a two-dimensional function of time, and therefore requires more detailed
attention. Specifically, each image at a particular instant of time is viewed as a frame sub-
divided into a number of small squares called picture elements or pixels; the larger the
number of pixels used to represent an image, the better the resolution of that image will
be. By scanning the pixels in an orderly sequence, the information contained in the image
is converted into an electrical signal whose magnitude is proportional to the brightness
level of the individual pixels. The electrical signal generated at the output of the scanner is
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the video signal that is transmitted. Generation of the video signal is the result of a well-
defined mapping process known to the receiver. Hence, given the video signal, the receiver
is able to reconstruct the original image. As with digital radio, television is also the bene-
ficiary of spectacular advances in digital electronics. These advances, coupled with the
application of advanced digital signal processing techniques and the demands of consumers,
have motivated the development of high-definition television (HDTV), which provides a
significant improvement in the quality of reconstructed images at the receiver output.

We turn next to the point-to-point communication scene. The radio has also touched
our daily lives in highly significant ways through two avenues: satellite communications and
wireless communications. Satellite communications, built around a satellite in geostation-
ary orbit, relies on line-of-sight radio propagation for the operation of an uplink and a
downlink. The uplink connects an Earth terminal to a transponder (i.e., electronic cir-
cuitry) on board the satellite, while the downlink connects the transponder to another
Earth terminal. Thus, an information-bearing signal is transmitted from the Earth termi-
nal to the satellite via the uplink, amplified in the transponder, and then retransmitted from
the satellite via the downlink to the other Earth terminal, as illustrated in Fig. 1.2. In so
doing, a satellite communication system offers a unique capability: global coverage.

In a loose sense, wireless communications operates in a manner similar to satellite com-
munications in that it also involves a downlink and an uplink. The downlink is responsi-
ble for forward-link radio transmission from a base station to its mobile users. The uplink
is responsible for reverse-link radio transmission from the mobile users to their base sta-
tions. Unlike satellite communications, the operation of wireless communications is dom-
inated by the multipath phenomenon due to reflections of the transmitted signal from
objects (e.g., buildings, trees, etc.) that lie in the propagation path. This phenomenon tends
to degrade the receiver performance, which makes the design of the receiver a challenging
task. In any event, wireless communications offers a unique capability of its own: mobil-
ity. Moreover, through the use of the cellular concept, the wireless communication system
is enabled to reuse the radio spectrum over a large area as many times as possible. Within
a cell, the available communication resources can be shared by the mobile users operating
within that cell.

COMMUNICATION NETWORKS

The computer was originally conceived as a machine working by itself to perform numer-
ical calculations. However, given the natural ability of a computer to perform logical func-
tions, it was soon recognized that the computer is ideally suited to the design of
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communication networks. As illustrated in Fig. 1.3, a communication network consists of
the interconnection of a number of routers that are made up of intelligent processors (e.g.,
microprocessors). The primary purpose of these processors is to route voice or data through
the network, hence the name “routers.” Each router has one or more hosts attached to it;
hosts refer to devices that communicate with one another. The purpose of a network is to
provide for the delivery or exchange of voice, video, or data among its hosts, which is
made possible through the use of digital switching. There are two principal forms of switch-
ing: circuit switching and packet switching.

In circuit switching, dedicated communication paths are established for the transmis-
sion of messages between two or more terminals, called stations. The communication path
or circuit consists of a connected sequence of links from source to destination. For exam-
ple, the links may consist of time slots (as in time-division multiplexed systems), for which
a common channel is available for multiple users. The important point to note is that once
it is in place, the circuit remains uninterrupted for the entire duration of transmission. Cir-
cuit switching is usually controlled by a centralized hierarchical control mechanism with
knowledge of the network’s entire organization. To establish a circuit-switched connection,
an available path through the telephone network is seized and then dedicated to the exclu-
sive use of the two users wishing to communicate. In particular, a call-request signal prop-
agates all the way to the destination, whereupon it is acknowledged before communication
can begin. Then, the network is effectively transparent to the users, which means that dur-
ing the entire connection time the resources allocated to the circuit are essentially “owned”
by the two users. This state of affairs continues until the circuit is disconnected.

Circuit switching is well suited for telephone networks, where the transmission of
voice constitutes the bulk of the network’s traffic. We say so because voice gives rise to a
stream traffic, and voice conversations tend to be of long duration (about 2 minutes on the
average) compared to the time required for setting up the circuit (about 0.1 to 0.5 seconds).

In packet switching,” on the other hand, the sharing of network resources is done on
a demand basis. Hence, packet switching has an advantage over circuit switching in that

2 Packet switching was invented by P. Baran in 1964 to satisfy a national defense need of the United States. The
original need was to build a distributed network with different levels of redundant connections, which is robust
in the sense that the network can withstand the destruction of many nodes due to a concerted attack, yet the sur-
viving nodes are able to maintain intercommunication for carrying common and control information; see Baran
(1990).
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when a link has traffic to send, the link tends to be more fully utilized. Unlike voice sig-
nals, data tend to occur in the form of bursts on an occasional basis.

The network principle of packet switching is store and forward. Specifically, in a
packet-switched network, any message longer than a specified size is subdivided prior to
transmission into segments not exceeding the specified size. The segments so formed are
called packets. After transporting the packets across different parts of the network, the
original message is reassembled at the destination on a packet-by-packet basis. The network
may thus be viewed as a pool of network resources (i.e., channel bandwidth, buffers, and
switching processors), with the resources being dynamically shared by a community of
competing hosts that wish to communicate. This dynamic sharing of network resources is
in direct contrast to the circuit-switched network, where the resources are dedicated to a
pair of hosts for the entire period they are in communication.

DATA NETWORKS

A communication network in which the hosts are all made up of computers and terminals
is commonly referred to as a data network. The design of such a network proceeds in an
orderly way by looking at the network in terms of a layered architecture, which is regarded
as a hierarchy of nested layers. A layer refers to a process or device inside a computer sys-
tem that is designed to perform a specific function. Naturally, the designers of a layer will
be familiar with its internal details and operation. At the system level, however, a user
views the layer in question merely as a “black box,” which is described in terms of inputs,
outputs, and the functional relation between the outputs and inputs. In the layered archi-
tecture, each layer regards the next lower layer as one or more black boxes with some
given functional specification to be used by the given higher layer. In this way, the highly
complex communication problem in data networks is resolved as a manageable set of well-
defined interlocking functions. It is this line of reasoning that has led to the development
of the open systems interconnection (OSI) reference model.> The term “open” refers to the
ability of any two systems to interconnect, provided they conform to the reference model
and its associated standards.

In the OSI reference model, the communications and related-connection functions
are organized as a series of layers with well-defined interfaces. Each layer is built on its pre-
decessor. In particular, each layer performs a related subset of primitive functions, and it
relies on the next lower layer to perform additional primitive functions. Moreover, each layer
offers certain services to the next higher layer and shields that layer from the implementa-
tion details of those services. Between each pair of layers there is an interface, which defines
the services offered by the lower layer to the upper layer.

As illustrated in Fig. 1.4, the OSI model is composed of seven layers. The figure also
includes a description of the functions of the individual layers of the model. Layer k on sys-
tem A, say, communicates with a layer R on some other system B in accordance with a set
of rules and conventions, which collectively constitute layer k protocol, where k = 1, 2,

.., 7. (The term “protocol” has been borrowed from common usage that describes con-
ventional social behavior between human beings.) The entities that comprise the corre-
sponding layers on different systems are referred to as peer processes. In other words,
communication between system A and system B is achieved by having the peer processes in
the two systems communicate via protocol. Physical connection between peer processes

3The OSI reference model was developed by a subcommittee of the International Organization for Standardiza-
tion (ISO) in 1977. For a discussion of the principles involved in arriving at the original seven layers of the OSI
model and a description of the layers themselves, see Tannenbaum (1996).
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control.

exists only at layer 1—namely, the physical layer. The remaining layers, 2 through 7, are in
virtual communication with their distant peers. Each of these latter six layers exchanges
data and control information with its neighboring layers (lower and above) through layer-
to-layer interfaces. In Fig. 1.4, physical communication is shown by solid lines, and virtual
communications are shown by dashed lines.

INTERNET?

The discussion of data networks just presented leads to the Internet. In the Internet para-
digm, the underlying network technology is decoupled from the applications at hand by
adopting an abstract definition of network service. In more specific terms, we may say the
following:

The applications are carried out independently of the technology employed to con-
struct the network.

By the same token, the network technology is capable of evolving without affecting
the applications.

“#For a fascinating account of the Internet, its historical evolution from the ARPANET, and international stan-
dards, see Abbate (2000). For easy-to-read essays on the Internet, see Special Issue, IEEE Communications
Magazine (2002); the articles presented therein are written by pioneering contributors to the development of the
Internet.
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The Internet application depicted in Fig. 1.5 has three functional blocks: hosts, subnets, and
routers. The hosts constitute nodes of the network, where data originate or where they are
delivered. The routers constitute intermediate nodes that are used to cross subnet bound-
aries. Within a subnet, all the hosts belonging to that subnet exchange data directly; see,
for example, subnets 1 and 3 in Fig. 1.5. In basic terms, the internal operation of a subnet
is organized in two different ways (Tanenbaum, 1996):

1. Comnnected manner, where the connections are called virtual circuits, in analogy with
physical circuits set up in a telephone system.

2. Connectionless manner, where the independent packets are called datagrams, in anal-
ogy with telegrams.

Like other data networks, the Internet has a layered set of protocols. In particular, the
exchange of data between the hosts and routers is accomplished by means of the Internet
protocol (IP), as illustrated in Fig. 1.6. The IP is a universal protocol that resides in the net-
work layer (i.e., layer 3 of the OSI reference model). It is simple, defining an addressing plan
with a built-in capability to transport data in the form of packets from node to node. In
crossing a subnetwork boundary, the routers make the decisions as to how the packets
addressed for a specified destination should be routed. This is done on the basis of rout-
ing tables that are developed through the use of custom protocols for exchanging pertinent
information with other routers. The net result of using the layered set of protocols is the
provision of best effort service. That is, the Internet offers to deliver each packet of data,

AP AP AP AP
TCP/UDP TCP/UDP TCP/UDP TCP/UDP
1P 1P 1P IP
Subnet 1 Subnet 1 Subnet 1
AP: Application protocol UDP: User datagram protocol

TCP: Transmission control protocol IP: Internet protocol

FIGURE 1.6 [Illustrating the network architecture of the Internet.
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but there are no guarantees on the transit time experienced in delivery or even whether the
packets will be delivered to the intended recipient.

The Internet has evolved into a worldwide system, placing computers at the heart of
a communication medium that is changing our daily lives in the home and workplace in
profound ways. We can send an e-mail message from a host in North America to another
host in Australia at the other end of the globe, with the message arriving at its destination
in a matter of seconds. This is all the more remarkable because the packets constituting the
message are quite likely to have taken entirely different paths as they are transported across
the network.

Another application that demonstrates the remarkable power of the Internet is our
use of it to surf the Web. For example, we may use a search engine to identify the refer-
ences pertaining to a particular subject of interest. A task that used to take hours and some-
times days searching through books and journals in the library now occupies a matter of
seconds!

To fully utilize the computing power of the Internet from a host located at a remote
site, we need a wideband modem (i.e., modulator-demodulator) to provide a fast commu-
nication link between that host and its subnet. When we say “fast,” we mean operating
speeds on the order of megabits per second and higher. A device that satisfies this require-
ment is the so-called digital subscriber line (DSL). What makes the DSL all the more remark-
able is the fact that it can operate over a linear wideband channel with an arbitrary frequency
response. Such a channel is exemplified by an ordinary telephone channel built using twisted
pairs for signal transmission. A twisted pair consists of two solid copper conductors, each
of which is encased in a polyvinyl chloride (PVC) sheath. Twisted pairs are usually made
up into cables, with each cable consisting of many twisted pairs in close proximity to each
other. From a signal-transmission viewpoint, the DSL satisfies the challenging requirement
described herein by following the well-known engineering principle of divide and conquer.
Specifically, the given wideband channel is approximated by a set of narrowband channels,
each of which can then be accommodated in a relatively straightforward manner.

One last comment is in order. Typically, access to the Internet is established via hosts
in the form of computer terminals (i.e., servers). The access is expanded by using hand-held
devices that act as hosts, which communicate with subnets of the Internet via wireless links.
Thus, by adding mobility through the use of wireless communications to the computing
power of the Internet to communicate, we have a new communication medium with enor-
mous practical possibilities.

INTEGRATION OF TELEPHONE AND INTERNET

One of the important challenges facing the telecommunications industry is the transmission
of Voice over Internet Protocol (VoIP), which would make it possible to integrate tele-
phony services with the rapidly growing Internet-based applications. The challenge is all
the more profound because the IP is designed to accommodate the exchange of data between
the hosts and the routers, which makes it difficult to support quality of service for VoIP.
Quality of service (QoS) is measured in terms of two parameters:

Packet loss ratio, defined as the number of packets lost in transport across the net-
work to the total number of packets pumped into the network.

Connection delay, defined as the time taken for a packet of a particular host-to-host
connection to transmit across the network.

Subjective tests performed on VoIP show that in order to provide voice-grade telephone
service, the packet loss ratio must be held below 1 percent, and one-way connection delay
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can accumulate up to 160 ms without significant degradation of quality. Well-designed
and managed VoIP networks, satisfying these provisions, are being deployed. However,
the issue of initial-echo control remains a challenge.’ Initial echo refers to the echo expe-
rienced at the beginning of a call on the first word or couple of words out of a user’s mouth.
The echo arises due to an impedance mismatch somewhere in the network, whereupon the
incident signal is reflected back to the source.

Looking into the future, we may make the following remarks on internet telephony:

1. VoIP will replace private branch exchanges (PBXs) and other office switches; PBXs
are remote switching units that have their own independent controls.®

2. VolIP is also currently having success with longer distance calls, but this is mainly due
to the excess capacity that is now available on long-haul networks. If the loading on
these long-haul networks increases, the delays will increase and a real-time service such
as VoIP will be degraded. Accordingly, if long-service providers keep adding capac-
ity so that loading is always low and response time is fast, thereby ensuring quality
of service, then VoIP telephony may become mainstream and widespread.

DATA STORAGE

When considering important applications of digital communication principles, it is nat-
ural to think in terms of broadcasting and point-to-point communication systems. Never-
theless, the very same principles are also applied to the digital storage of audio and video
signals, exemplified by compact disc (CD) and digital versatile disc (DVD) players. DVDs
are refinements of CDs in that their storage capacity (in the order of tens of gigabytes) are
orders of magnitude higher than that of CDs, and they can also deliver data at a much
higher rate.

The digital domain is preferred over the analog domain for the storage of audio and
video signals for the following compelling reasons:

(i) The quality of a digitized audio/video signal, measured in terms of frequency response,
linearity, and noise, is determined by the digital-to-analog conversion (DAC) process,
the parameterization of which is under the designer’s control.

(i1) Once the audio/video signal is digitized, we can make use of well-developed and pow-
erful encoding techniques for data compression to reduce bandwidth, and error-con-
trol coding to provide protection against the possibility of making errors in the course
of storage.

(iii) For most practical applications, the digital storage of audio and video signals does not
degrade with time.

(iv) Continued improvements in the fabrication of integrated circuits used to build CDs
and DVDs ensure the ever-increasing cost-effectiveness of these digital storage devices.

With the help of the powerful encoding techniques built into their design, DVDs can hold
hours of high-quality audio-visual contents, which, in turn, makes them ideally suited for
interactive multimedia applications.

3The limits on QoS measures mentioned herein are taken from the overview article by James, Chen, and Garri-
son (2004), which appears in a Special Issue of the IEEE Communications Magazine devoted to voice VoIP and
quality of service.

6PBXs are discussed in McDonald (1990).
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1.3 Primary Resources
and Operational Requirements

The communication systems described in Section 1.2 cover many diverse fields. Neverthe-
less, in their own individual ways, the systems are designed to provide for the efficient uti-
lization of two primary communication resources:

Transmitted power, which is defined as the average power of the transmitted signal.
Channel bandwidth, which is defined by the width of the passband of the channel.

Depending on which of these two resources is considered to be the limiting factor, we may
classify communication channels as follows:

(1) Power-limited channels, where transmitted power is at a premium. Examples of such
channels include the following;:

Wireless channels, where it is desirable to keep the transmitted power low so as to
prolong battery life.

Satellite channels, where the available power on board the satellite transponder is
limited, which, in turn, necessitates keeping the transmitted power on the down-
link at a low level.

Deep-space links, where the available power on board a probe exploring outer
space is extremely limited, which again requires that the average power of infor-
mation-bearing signals sent by the probe to an Earth station be maintained as low
as possible.

(i1) Band-limited channels, where channel bandwidth is at a premium. Examples of this
second category of communication channels include the following:

Telephone channels, where, in a multi-user environment, the requirement is to
minimize the frequency band allocated to the transmission of each voice signal
while making sure that the quality of service for each user is maintained.
Television channels, where the available channel bandwidth is limited by regula-
tory agencies and the quality of reception is assured by using a high enough trans-
mitted power.

Another important point to keep in mind is the unavoidable presence of noise at the
receiver input of a communication system. In a generic sense, noise refers to unwanted sig-
nals that tend to disturb the quality of the received signal in a communication system. The
sources of noise may be internal or external to the system. An example of internal noise is
the ubiquitous channel noise produced by thermal agitation of electrons in the front-end
amplifier of the receiver. Examples of external noise include atmospheric noise and inter-
ference due to transmitted signals pertaining to other users.

A quantitative way to account for the beneficial effect of the transmitted power in rela-
tion to the degrading effect of noise (i.e., assess the quality of the received signal) is to
think in terms of the signal-to-noise ratio (SNR), which is a dimensionless parameter. In par-
ticular, the SNR at the receiver input is formally defined as the ratio of the average power
of the received signal (i.e., channel output) to the average power of noise measured at the
receiver input. The customary practice is to express the SNR in decibels (dBs), which is
defined as 10 times the logarithm (to base 10) of the power ratio.” For example, signal-to-
noise ratios of 10, 100, and 1000 are 10, 20, and 30 dBs, respectively.

7 For a discussion of the decibel, see Appendix 1.
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In light of this discussion, it is now apparent that as far as performance evaluation is
concerned, there are only two system-design parameters: signal-to-noise ratio and channel
bandwidth. Stated in more concrete terms:

The design of a communication system boils down to a tradeoff between signal-to-
noise ratio and channel bandwidth.

Thus, we may improve system performance by following one of two alternative design
strategies, depending on system constraints:

1. Signal-to-noise ratio is increased to accommodate a limitation imposed on channel

bandwidth.

2. Channel bandwidth is increased to accommodate a limitation imposed on signal-to-
noise ratio.

Of these two possible design approaches, we ordinarily find that strategy 1 is simpler to
implement than strategy 2, because increasing signal-to-noise ratio can be accomplished sim-
ply by raising the transmitted power. On the other hand, in order to exploit increased chan-
nel bandwidth, we need to increase the bandwidth of the transmitted signal, which, in turn,
requires increasing the complexity of both the transmitter and receiver.

1.4 Underpinning Theories

of Communication Systems

The study of communication systems is challenging not only in technical terms but also in
theoretical terms. In this section, we highlight four theories, each of which is essential for
understanding a specific aspect of communication systems.®

MODULATION THEORY

Modulation is a signal-processing operation that is basic to the transmission of an infor-
mation-bearing signal over a communication channel, whether in the context of digital or
analog communications. This operation is accomplished by changing some parameter of
a carrier wave in accordance with the information-bearing (message) signal. The carrier wave
may take one of two basic forms, depending on the application of interest:

Sinusoidal carrier wave, whose amplitude, phase, or frequency is the parameter cho-
sen for modification by the information-bearing signal.

Periodic sequence of pulses, whose amplitude, width, or position is the parameter
chosen for modification by the information-bearing signal.

Regardless of which particular approach is used to perform the modulation process,
the issues in modulation theory that need to be addressed are:

Time-domain description of the modulated signal.

Frequency-domain description of the modulated signal.

Detection of the original information-bearing signal and evaluation of the effect of
noise on the receiver.

8 One other theory—namely, Information Theory—is basic to the study of communication systems. We have not
included this theory here because of its highly mathematical and therefore advanced nature, which makes it inap-
propriate for an introductory book.
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FOURIER ANALYSIS

The Fourier transform is a linear mathematical operation that transforms the time-domain
description of a signal into a frequency-domain description without loss of information,
which means that the original signal can be recovered exactly from the frequency-domain
description. However, for the signal to be Fourier transformable, certain conditions have
to be satisfied. Fortunately, these conditions are satisfied by the kind of signals encountered
in the study of communication systems.

Fourier analysis provides the mathematical basis for evaluating the following issues:

Frequency-domain description of a modulated signal, including its transmission band-

width.

Transmission of a signal through a linear system exemplified by a communication
channel or (frequency-selective) filter.

Correlation (i.e., similarity) between a pair of signals.

These evaluations take on even greater importance by virtue of an algorithm known as the
fast Fourier transform, which provides an efficient method for computing the Fourier
transform.

DETECTION THEORY

Given a received signal, which is perturbed by additive channel noise, one of the tasks that
the receiver has to tackle is how to detect the original information-bearing signal in a reli-
able manner. The signal-detection problem is complicated by two issues:

The presence of noise.

Factors such as the unknown phase-shift introduced into the carrier wave due to
transmission of the sinusoidally modulated signal over the channel.

Dealing with these issues in analog communications is radically different from dealing with
them in digital communications. In analog communications, the usual approach focuses on
output signal-to-noise ratio and related calculations. In digital communications, on the
other hand, the signal-detection problem is viewed as one of hypothesis testing. For exam-
ple, in the specific case of binary data transmission, given that binary symbol 1 is trans-
mitted, what is the probability that the symbol is correctly detected, and how is that
probability affected by a change in the received signal-to-noise ratio at the receiver input?

Thus, in dealing with detection theory, we address the following issues in analog com-
munications:

The figure of merit for assessing the noise performance of a specific modulation
strategy.

The threshold phenomenon that arises when the transmitted signal-to-noise ratio
drops below a critical value.

Performance comparison of one modulation strategy against another.
In digital communications, on the other hand, we look at:

The average probability of symbol error at the receiver output.

The issue of dealing with uncontrollable factors.

Comparison of one digital modulation scheme against another.
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PROBABILITY THEORY AND RANDOM PROCESSES

From the brief discussion just presented on the role of detection theory in the study of com-
munication systems, it is apparent that we need to develop a good understanding of the
following;:

Probability theory for describing the behavior of randomly occurring events in math-
ematical terms.

Statistical characterization of random signals and noise.

Unlike a deterministic signal, a random signal is a signal about which there is uncertainty
before it occurs. Because of the uncertainty, a random signal may be viewed as belonging
to an ensemble, or a group, of signals, with each signal in the ensemble having a different
waveform from that of the others in the ensemble. Moreover, each signal within the ensem-
ble has a certain probability of occurrence. The ensemble of signals is referred to as a ran-
dom process or stochastic process. Examples of a random process include:

Electrical noise generated in the front-end amplifier of a radio or television receiver.
Speech signal produced by a male or female speaker.
Video signal transmitted by the antenna of a TV broadcasting station.
In dealing with probability theory, random signals, and noise, we address the following
issues:
Basic concepts of probability theory and probabilistic models.

Statistical description of a random process in terms of ensemble as well as temporal
averages.

Mathematical analysis and processing of random signals.

1.5 Concluding Remarks

In this chapter, we have given a historical account and applications of communications
and a brief survey of underlying theories of communication systems. In addition, we pre-
sented the following points to support our view that the study of this discipline is both
highly challenging and truly exciting:

(1) Communication systems encompass many and highly diverse applications: radio,
television, wireless communications, satellite communications, deep-space commu-
nications, telephony, data networks, Internet, and quite a few others.

(ii) Digital communication has established itself as the dominant form of communication.
Much of the progress that we have witnessed in the advancement of digital commu-
nication systems can be traced to certain enabling theories and technologies, as sum-
marized here:

Abstract mathematical ideas that are highly relevant to a deep understanding of the
processing of information-bearing signals and their transmission over physical
media.

Digital signal-processing algorithms for the efficient computation of spectra, cor-
relation, and filtering of signals.

Software development and novel architectures for designing microprocessors.
Spectacular advances in the physics of solid-state devices and the fabrication of very-
large-scale integrated (VLSI) chips.



1.5 Concluding Remarks 17

(iii) The study of communication systems is a dynamic discipline, continually evolving
by exploiting new technological innovations in other disciplines and responding to new
societal needs.

(iv) Last but by no means least, communication systems touch our daily lives both at
home and in the workplace, and our lives would be much poorer without the wide
availability of communication devices that we take for granted.

The remainder of the book, encompassing ten chapters, provides an introductory
treatment of both analog and digital kinds of communication systems. The book should pre-
pare the reader for going on to deepen his or her knowledge of a discipline that is best
described as almost limitless in scope. This is especially the case given the trend toward the
unification of wireline and wireless networks to accommodate the integrated transmission
of voice, video, and data.



CHAPTER 2

FOURIER REPRESENTATION
OF SIGNALS AND SYSTEMS

In mathematical terms, a signal is ordinarily described as a function of time, which is how
we usually see the signal when its waveform is displayed on an oscilloscope. However, as
pointed out in Chapter 1, from the perspective of a communication system it is important
that we know the frequency content of the signal in question. The mathematical tool that
relates the frequency-domain description of the signal to its time-domain description is the
Fourier transform. There are in fact several versions of the Fourier transform available. In
this chapter, we confine the discussion primarily to two specific versions:

The continuous Fourier transform, or the Fourier transform (FT) for short, which
works with continuous functions in both the time and frequency domains.

The discrete Fourier transform, or DFT for short, which works with discrete data in
both the time and frequency domains.

Much of the material presented in this chapter focuses on the Fourier transform, since
the primary motivation of the chapter is to determine the frequency content of a continu-
ous-time signal or to evaluate what happens to this frequency content when the signal is
passed through a linear time-invariant (LTI) system. In contrast, the discrete Fourier trans-
form, discussed toward the end of the chapter, comes into its own when the requirement is
to evaluate the frequency content of the signal on a digital computer or to evaluate what
happens to the signal when it is processed by a digital device as in digital communications.

The extensive material presented in this chapter teaches the following lessons:

» Lesson 1: The Fourier transform of a signal specifies the complex amplitudes of the com-
ponents that constitute the frequency-domain description or spectral content of the signal.
The inverse Fourier transform uniquely recovers the signal, given its frequency-domain
description.

» Lesson 2: The Fourier transform is endowed with several important properties, which,
individually and collectively, provide invaluable insight into the relationship between a sig-
nal defined in the time domain and its frequency domain description.

» Lesson 3: A signal can only be strictly limited in the time domain or the frequency domain,
but not both.

» Lesson 4: Bandwidth is an important parameter in describing the spectral content of a sig-
nal and the frequency response of a linear time-invariant filter.

18
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» Lesson 5: A widely used algorithm called the fast Fourier transform algorithm provides a
powerful tool for computing the discrete Fourier transform; it is the mathematical tool for
digital computations involving Fourier transformation.

2.1 The Fourier Transform'

DEFINITIONS

Let g(¢) denote a nonperiodic deterministic signal, expressed as some function of time t.
By definition, the Fourier transform of the signal g(#) is given by the integral

o0

G(f) = [ st exp(=s2mt) e 2.1
-0

where j = \/jl, and the variable f denotes frequency; the exponential function

exp(—j2ft) is referred to as the kernel of the formula defining the Fourier transform.

Given the Fourier transform G(f), the original signal g(#) is recovered exactly using the for-

mula for the inverse Fourier transform:

(o]

s0) = |G explizafe) df 2.2
—00

where the exponential exp(j27ft) is the kernel of the formula defining the inverse Fourier

transform. The two kernels of Egs. (2.1) and (2.2) are therefore the complex conjugate of

each other.

Note also that in Eqs. (2.1) and (2.2) we have used a lowercase letter to denote the
time function and an uppercase letter to denote the corresponding frequency function. The
functions g(t) and G(f) are said to constitute a Fourier-transform pair. In Appendix 2, we
derive the definitions of the Fourier transform and its inverse, starting from the Fourier series
of a periodic waveform.

We refer to Eq. (2.1) as the analysis equation. Given the time-domain behavior of a
system, we are enabled to analyze the frequency-domain behavior of a system. The basic
advantage of transforming the time-domain behavior into the frequency domain is that
resolution into eternal sinusoids presents the behavior as the superposition of steady-state
effects. For systems whose time-domain behavior is described by linear differential equa-
tions, the separate steady-state solutions are usually simple to understand in theoretical as
well as experimental terms.

Conversely, we refer to Eq. (2.2) as the synthesis equation. Given the superposition
of steady-state effects in the frequency-domain, we can reconstruct the original time-domain
behavior of the system without any loss of information. The analysis and synthesis equa-
tions, working side by side as depicted in Fig. 2.1, enrich the representation of signals and

oseph Fourier studied the flow of heat in the early 19th century. Understanding heat flow was a problem of both
practical and scientific significance at that time and required solving a partial-differential equation called the heat
equation. Fourier developed a technique for solving partial-differential equations that was based on the assump-
tion that the solution was a weighted sum of harmonically related sinusoids with unknown coefficients, which
we now term the Fourier series. Fourier’s initial work on heat conduction was submitted as a paper to the Acad-
emy of Sciences of Paris in 1807 and rejected after review by Lagrange, Laplace, and Legendre. Fourier persisted
in developing his ideas in spite of being criticized for a lack of rigor by his contemporaries. Eventually, in 1822,
he published a book containing much of his work, Theorie analytique de la chaleur, which is now regarded as
one of the classics of mathematics.
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Analysis equation:
G(f)= [ & expjamforde

/\A

Time-domain Frequency-domain
description: description:
8() G(f)
\_/ FIGURE 2.1 Sketch of the interplay
Synthesis equation: between the synthesis and analysis
* . equations embodied in Fourier
a0 =[G ep(j2mfondf d .

- transformation.

systems by making it possible to view the representation in two interactive domains: the
time domain and the frequency domain.

For the Fourier transform of a signal g(#) to exist, it is sufficient, but not necessary,
that g(t) satisfies three conditions known collectively as Dirichlet’s conditions:

1. The function g(2) is single-valued, with a finite number of maxima and minima in any
finite time interval.

2. The function g(¢) has a finite number of discontinuities in any finite time interval.
3. The function g(t) is absolutely integrable—that is,

/_ g(0) de <

o)

We may safely ignore the question of the existence of the Fourier transform of a time func-
tion g(¢) when it is an accurately specified description of a physically realizable signal (e.g.,
voice signal, video signal). In other words, physical realizability is a sufficient condition for

the existence of a Fourier transform. For physical realizability of a signal g(), the energy
o

of the signal defined by / lg()|* dt must satisfy the condition

/ gt dr <

o0

Such a signal is referred to as an energy-like signal or simply an energy signal. What we are
therefore saying is that all energy signals are Fourier transformable.

NOTATIONS

The formulas for the Fourier transform and the inverse Fourier transform presented in
Egs. (2.1) and (2.2) are written in terms of two variables: time ¢ measured in seconds (s)
and frequency f measured in bertz (Hz). The frequency f is related to the angular frequency
w as

o =27f

which is measured in radians per second (rad/s). We may simplify the expressions for the
exponents in the integrands of Egs. (2.1) and (2.2) by using w instead of f. However, the
use of f is preferred over w for two reasons. First, the use of frequency results in mathe-
matical symmetry of Egs. (2.1) and (2.2) with respect to each other in a natural way. Sec-
ond, the spectral contents of communication signals (i.e., voice and video signals) are
usually expressed in hertz.
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A convenient shorthand notation for the transform relations of Egs. (2.1) and (2.2)
is to write

G(f) = Flg(?)] (2.3)

and

g(t) = F[G(f)] (2.4)

where F[] and F~![] play the roles of linear operators. Another convenient shorthand nota-
tion for the Fourier-transform pair, represented by g(¢) and G(f), is

g(t) = G(f) (2.5)

The shorthand notations described in Egs. (2.3) through (2.5) are used in the text where
appropriate.

CONTINUOUS SPECTRUM

By using the Fourier transform operation, a pulse signal g(¢) of finite energy is expressed
as a continuous sum of exponential functions with frequencies in the interval —« to .
The amplitude of a component of frequency f is proportional to G(f), where G(f) is the
Fourier transform of g(z). Specifically, at any frequency £, the exponential function
exp(j2mft) is weighted by the factor G(f) df, which is the contribution of G(f) in an infin-
itesimal interval df centered on the frequency f. Thus we may express the function g(#) in
terms of the continuous sum of such infinitesimal components, as shown by the integral

o
«0) = |G expliamfi) df
—00

Restating what was mentioned previously, the Fourier transformation provides us
with a tool to resolve a given signal g(¢) into its complex exponential components occu-
pying the entire frequency interval from —o to . In particular, the Fourier transform G(f)
of the signal defines the frequency-domain representation of the signal in that it specifies
complex amplitudes of the various frequency components of the signal. We may equiva-
lently define the signal in terms of its time-domain representation by specifying the func-
tion g(¢) at each instant of #ime t. The signal is uniquely defined by either representation.

In general, the Fourier transform G(f) is a complex function of frequency £, so that
we may express it in the form

G(f) = |G(f)| exp[j6(f)] (2.6)

where |G(f)| is called the continuous amplitude spectrum of g(t), and 6(f) is called the con-

tinuous phase spectrum of g(t). Here, the spectrum is referred to as a continuous spec-

trum because both the amplitude and phase of G(f) are uniquely defined for all frequencies.
For the special case of a real-valued function g(¢), we have

G(~) = G*(f)

where the asterisk denotes complex conjugation. Therefore, it follows that if g(¢) is a real-
valued function of time t, then

and
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Accordingly, we may make the following statements on the spectrum of a real-valued signal:

1. The amplitude spectrum of the signal is an even function of the frequency; that is, the
amplitude spectrum is symmetric with respect to the origin f = 0.

2. The phase spectrum of the signal is an odd function of the frequency; that is, the
phase spectrum is antisymmetric with respect to the origin f = 0.

These two statements are summed up by saying that the spectrum of a real-valued signal
exhibits conjugate symmetry.

EXAMPLE 2.1 Rectangular Pulse

Consider a box function or rectangular pulse of duration T and amplitude A, as shown in
Fig. 2.2(a). To define this pulse mathematically in a convenient form, we use the notation

1 1
L 9=
rect(t) = 1 1 (2.7)
0, t < ) ort>z

which stands for a rectangular function of unit amplitude and unit duration centered at ¢ = 0.
Then, in terms of this “standard” function, we may express the rectangular pulse of Fig. 2.2(a)

simply as
(r)y=A rect(£>
& T

The Fourier transform of the rectangular pulse g(2) is given by

T/2
G(f) = /T/ZA exp(—j2mft) dt

= AT(%) (2.8)

To simplify the notation in the preceding and subsequent results, we introduce another stan-
dard function—namely, the sinc function—defined by

. sin(7A)
sinc(A) = (2.9)
mA
IG(H)
g AT
A
_T 0 T 4 3.2 1 0 1 2 3 4 /
2 2 T T T T T T T T

(a)

)

FIGURE 2.2 (a) Rectangular pulse. (b) Amplitude spectrum.
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sinc (A)
1.0

FIGURE 2.3 The sinc function.

where A is the independent variable. The sinc function plays an important role in communi-
cation theory. As shown in Fig. 2.3, it has its maximum value of unity at A = 0, and approaches
zero as A approaches infinity, oscillating through positive and negative values. It goes through
zeroat A = *1, =2, ..., and so on.

Thus, in terms of the sinc function, we may rewrite Eq. (2.8) as

A rect(%) — AT sinc(fT) (2.10)

The amplitude spectrum |G(f)| is shown plotted in Fig. 2.2(b). The first zero-crossing of the
spectrum occurs at f = ®£1/T. As the pulse duration T is decreased, this first zero-crossing
moves up in frequency. Conversely, as the pulse duration T is increased, the first zero-crossing
moves toward the origin.

This example shows that the relationship between the time-domain and frequency-
domain descriptions of a signal is an inverse one. That is, a pulse narrow in time has a sig-
nificant frequency description over a wide range of frequencies, and vice versa. We shall
have more to say on the inverse relationship between time and frequency in Section 2.3.

Note also that in this example, the Fourier transform G(f) is a real-valued and sym-
metric function of frequency f. This is a direct consequence of the fact that the rectangu-
lar pulse g(#) shown in Fig. 2.2(a) is a symmetric function of time .

EXAMPLE 2.2 Exponential Pulse

A truncated decaying exponential pulse is shown in Fig. 2.4(a). We define this pulse mathe-
matically in a convenient form using the unit step function:

1, t>0
1

u(t) = > t=20 (2.11)
0, t<0
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g(@) g@)
1.0 1.0
0.366 0.366
0 1/a 1/a 0

(a) (b)

FIGURE 2.4 (a) Decaying exponential pulse. (b) Rising exponential pulse.

We may then express the decaying exponential pulse of Fig. 2.4(a) as

8(t) = exp(—ar)u(z)

Recognizing that g(#) is zero for ¢ < 0, the Fourier transform of this pulse is

G(f) = /0 exp(—at) exp(—j2ft) dt

/OOO exp[—t(a + j2af)] dt

L
a + 2af

The Fourier-transform pair for the decaying exponential pulse of Fig. 2.4(a) is therefore

1
exp(—at)u(t) — m (2.12)

A truncated rising exponential pulse is shown in Fig. 2.4(b), which is defined by
8(2) = exp(at)u(—t)

Note that #(—¢) is equal to unity for £ < 0, one-half at ¢ = 0, and zero for ¢t > 0. With g(#)
equal to zero for ¢ > 0, the Fourier transform of this pulse is

0
G(f) = [ exp(at) exp(—2=ft) dt

o0

Replacing # with —#, we may next write

A exp[—#(a — j2=f)] dt

_ L
a — j2xwf

G(f)
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IG(H arg[G(f)]

1.0

S

-W 0 w -W 0
_
2

FIGURE 2.5 Frequency function G(f) for Problem 2.2.

The Fourier-transform pair for the rising exponential pulse of Fig. 2.4(b) is therefore

1
exp(—at)u(—t) =— = j2nf (2.13)
The decaying and rising exponential pulses of Fig. 2.4 are both asymmetric functions of time
t. Their Fourier transforms are therefore complex valued, as shown in Egs. (2.12) and (2.13).
Moreover, from these Fourier-transform pairs, we readily see that truncated decaying and ris-
ing exponential pulses have the same amplitude spectrum, but the phase spectrum of the one
is the negative of the phase spectrum of the other.

» Drill Problem 2.1 Evaluate the Fourier transform of the damped sinusoidal wave
g(t) = exp(—t) sin(27f.t)u(t), where u(¢) is the unit step function. <
» Drill Problem 2.2 Determine the inverse Fourier transform of the frequency function

G(f) defined by the amplitude and phase spectra shown in Fig. 2.5. <

2.2 Properties of the Fourier Transform

It is useful to have insight into the relationship between a time function g(¢) and its Fourier
transform G(f), and also into the effects that various operations on the function g(¢) have
on the transform G(f). This may be achieved by examining certain properties of the Fourier
transform. In this section, we describe fourteen properties, which we will prove, one by one.
These properties are summarized in Table A8.1 of Appendix 8 at the end of the book.

PROPERTY 1 Linearity (Superposition) Let g((f) == G(f) and (1) = G,(f).
Then for all constants ¢| and ¢, we have

c1g1(t) + agp(t) == caGi(f) + aGa(f) (2.14)

The proof of this property follows simply from the linearity of the integrals defining G(f)
and g(#).

Property 1 permits us to find the Fourier transform G(f) of a function g(¢) that is a
linear combination of two other functions g;(¢) and g,(#) whose Fourier transforms G;(f)
and G,(f) are known, as illustrated in the following example.
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ExAMPLE 2.3 Combinations of Exponential Pulses
Consider a double exponential pulse (defined by (see Fig. 2.6(a))

exp(—at), t>0

g(t) =41, t=0
exp(at), t<0
= exp(—alt|) (2.15)

This pulse may be viewed as the sum of a truncated decaying exponential pulse and a truncated
rising exponential pulse. Therefore, using the linearity property and the Fourier-transform
pairs of Egs. (2.12) and (2.13), we find that the Fourier transform of the double exponential
pulse of Fig. 2.6(a) is

1 1
Gf) = a + 2af * a — j2af
_ 2a
2+ (2af)?

We thus have the following Fourier-transform pair for the double exponential pulse of
Fig. 2.6(a):

2a
exp(—alt]) — —— 2.16
p(—alt]) 21 o) (2.16)
8(®)
1.0
0.366
1 1 !
7 () Z
8(®)
1.0
t
0

-1.0

(b)

FIGURE 2.6 (a) Double-exponential pulse (symmetric). (b) Another double-exponential
pulse (odd-symmetric).
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sgn(t)

1.0

FIGURE 2.7 Signum function.

Note that because of the symmetry in the time domain, as in Fig. 2.6(a), the spectrum is real
and symmetric; this is a general property of such Fourier-transform pairs.

Another interesting combination is the difference between a truncated decaying expo-
nential pulse and a truncated rising exponential pulse, as shown in Fig. 2.6(b). Here we have

exp(—at), t>0
g(t) =40, t=0 (2.17)
—exp(at), t<0

We may formulate a compact notation for this composite signal by using the signum function
that equals +1 for positive time and —1 for negative time, as shown by

+1, t>0
sgn(t) = ¢ 0, t=0 (2.18)
-1, t<0

The signum function is shown in Fig. 2.7. Accordingly, we may reformulate the composite sig-
nal g(¢) defined in Eq. (2.17) simply as
g(t) = exp(—alt|) sgn(z)

Hence, applying the linearity property of the Fourier transform, we readily find that in light
of Egs. (2.12) and (2.13), the Fourier transform of the signal g(#) is given by

1 1
F —alt )] = -
fexp(—ale) sen()] = S~
_
a* + (2mf)?
We thus have the Fourier-transform pair
—j4af

—_

exp(—alt]) sgn(z) = (2.19)

a* + (2mf)?

In contrast to the Fourier-transform pair of Eq. (2.16), the Fourier transform in Eq. (2.19) is
odd and purely imaginary. It is a general property of Fourier-transform pairs that apply to an
odd-symmetric time function, which satisfies the condition g(—¢) = —g(t), as in Fig. 2.6(b);
such a time function has an odd and purely imaginary function as its Fourier transform.

27
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PROPERTY 2 Dilation Let g(t) == G(f). Then, the dilation property or similarity
property states that

glat) = 1G<f> (2.20)

ja| ~\a

where the dilation factor—namely, a—is a real number.

To prove this property, we note that

Flg(at)] = / ¢lat) exp(—j2nft) di

Set 7 = at. There are two cases that can arise, depending on whether the dilation factor a
is positive or negative. If a > 0, we get

Flgtan] =+ [ o) x| ~2n(L)r]
1)

On the other hand, if @ < 0, the limits of integration are interchanged so that we have the
multiplying factor —(1/a) or, equivalently, 1/|a|. This completes the proof of Eq. (2.20).

Note that the dilation factors a and 1/a used in the time and frequency functions in
Eq. (2.20) are reciprocals. In particular, the function g(at) represents g(¢) compressed in
time by the factor a, whereas the function G(f/a) represents G(f) expanded in frequency
by the same factor a, assuming that 0 < g < 1. Thus, the dilation rule states that the com-
pression of a function g() in the time domain is equivalent to the expansion of its Fourier
transform G(f) in the frequency domain by the same factor, or vice versa.

For the special case when a = —1, the dilation rule of Eq. (2.20) reduces to the reflec-
tion property, which states that if g(¢) == G(f), then
g(—t) = G(-f) (2.21)

Referring to Fig. 2.4, we see that the rising exponential pulse shown in part (b) of the fig-
ure is the reflection of the decaying exponential pulse shown in part (a) with respect to the
vertical axis. Hence, applying the reflection rule to Eq. (2.12) that pertains to the decay-
ing exponential pulse, we readily see that the Fourier transform of the rising exponential
pulse is 1/(a — j2=f), which is exactly what we have in Eq. (2.13).

PROPERTY 3 Conjugation Rule Let g(¢) == G(f). Then for a complex-valued time
function g(t), we have

g;;,(t) —_ G(_f) (222)

where the asterisk denotes the complex-conjugate operation.

To prove this property, we know from the inverse Fourier transform that

o(t) = / G(f) explj2mfe) df

o0
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Taking the complex conjugates of both sides yields

0 = [ () expl-p2aft) df

o0

Next, replacing f with —f gives

e == [ G explizat df

/ G*(~f) explj2nft) df

o0

That is, g*(¢) is the inverse Fourier transform of G*(—f), which is the desired result.
As a corollary to the conjugation rule of Eq. (2.22), we may state that if
g(t) == G(f), then

g (1) == G*(f) (2.23)
This result follows directly from Eq. (2.22) by applying the reflection rule described in
Eq. (2.21).
PROPERTY 4 Duality If g(¢) == G(f), then
G(t) = g(-/) (2.24)

This property follows from the relation defining the inverse Fourier transform of Eq. (2.21)
by first replacing ¢ with —#, thereby writing it in the form

g(—1) = / G(f) exp(—j2nft) df

Finally, interchanging ¢ and f (i.e., replacing ¢ with f in the left-hand side of the equation
and f with # in the right-hand side), we get

(N = [ G exp(-2af) d
which is the expanded part of Eq. (2.24) in going from the time domain to the frequency
domain.

EXAMPLE 2.4 Sinc Pulse

Consider a signal g(¢) in the form of a sinc function, as shown by
g(#) = A sinc(2Wr)

To evaluate the Fourier transform of this function, we apply the duality and dilation proper-
ties to the Fourier-transform pair of Eq. (2.10). Then, recognizing that the rectangular func-
tion is an even function of time, we obtain the result

A f )
A sinc(2Wt) — —— rect| = 2.25
sinc( ) W rec (ZW ( )
which is illustrated in Fig. 2.8. We thus see that the Fourier transform of a sinc pulse is zero
for |[f| > W. Note also that the sinc pulse itself is only asymptotically limited in time in the sense
that it approaches zero as time ¢ approaches infinity; it is this asymptotic characteristic that
makes the sinc function into an energy signal and therefore Fourier transformable.
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8@

G(f)

(@) (b)

FIGURE 2.8 (a) Sinc pulse g(¢). (b) Fourier transform G(f).

PRrOPERTY 5 Time Shifting If g(t) == G(f), then
8(t — 1) == G(f) exp(—27fto) (2.26)

where ty is a real constant time shift.

To prove this property, we take the Fourier transform of g(¢# — #;) and then set
7 = (t — %) or, equivalently, t = 7 + #;. We thus obtain
(e.¢]
exp(—/Zﬂ'ﬂo)/ g(7) exp(—j2=7T) dr
—00

= exp(—/27fty) G(f)

The time-shifting property states that if a function g(t) is shifted along the time axis by an
amount ?j, the effect is equivalent to multiplying its Fourier transform G(f) by the factor
exp(—j2fty). This means that the amplitude of G(f) is unaffected by the time shift, but
its phase is changed by the linear factor —2fty, which varies linearly with frequency £.

Flg(t — 20)]

PROPERTY 6 Frequency Shifting If g(¢) == G(f), then
exp(2wfct)g(t) == G(f — fc) (2.27)

where f, is a real constant frequency.

This property follows from the fact that

Flexp(2mf.t)g(t)] = / o(t) expl—j2mi(f — £)] dr

- G(f— )

That is, multiplication of a function g(z) by the factor exp(j27f,t) is equivalent to shifting
its Fourier transform G(f) along the frequency axis by the amount f,. This property is a
special case of the modulation theorem discussed later under Property 11; basically, a shift
of the range of frequencies in a signal is accomplished by using the process of modulation.
Note the duality between the time-shifting and frequency-shifting operations described in
Egs. (2.26) and (2.27).



2.2  Properties of the Fourier Transform

EXAMPLE 2.5 Radio Frequency (RF) Pulse

Consider the pulse signal g(#) shown in Fig. 2.9(a), which consists of a sinusoidal wave of unit
amplitude and frequency f,, extending in duration from ¢t = —T/2 to ¢t = T/2. This signal is
sometimes referred to as an RF pulse when the frequency f. falls in the radio-frequency band.
The signal g(#) of Fig. 2.9(a) may be expressed mathematically as follows:

t
g(t) = rect(?) cos(27f.t) (2.28)
To find the Fourier transform of the RF signal, we first use Euler’s formula to write
1 . :
cos(2mf.t) = z[exp(;lﬂ'fct) + exp(—j2mf.t)]

Therefore, applying the frequency-shifting property to the Fourier-transform pair of Eq. (2.10),
and then invoking the linearity property of the Fourier transform, we get the desired result

rect(%) cos(2wf,t) =— %{sinc[T(f — )] + sinc[T(f + )]} (2.29)
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FIGURE 2.9 (a) RF pulse of unit amplitude and duration T. (b) Amplitude spectrum.
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In the special case of /. T >> 1—that is, the frequency f. is large compared to the reciprocal of
the pulse duration T—we may use the approximate result

Tsinc{T(F = £)], >0

G(f) =40, f=0 (2.30)
Tenc(T(F+£)], <0
Under the condition /. T >> 1, the amplitude spectrum of the RF pulse is shown in Fig. 2.9(b).

This diagram, in relation to Fig. 2.2(b), clearly illustrates the frequency-shifting property of the
Fourier transform.

PROPERTY 7 Area Under g(t) If g(t) == G(f), then

/Oog(t) dt = G(0) (2.31)

o0

That is, the area under a function g(t) is equal to the value of its Fourier transform G(f)
atf = 0.

This result is obtained simply by putting f = 0 in Eq. (2.1) defining the Fourier trans-
form of the function g(t).

» Drill Problem 2.3  Suppose g(#) is real valued with a complex-valued Fourier transform
G(f). Explain how the rule of Eq. (2.31) can be satisfied by such a signal. <

PROPERTY 8 Area Under G(f) If g(t) == G(f), then
«0) = [ G(ar 2.32)

That is, the value of a function g(t) at t = 0 is equal to the area under its Fourier trans-

form G(f).

The result is obtained simply by putting # = 0 in Eq. (2.2) defining the inverse Fourier
transform of G(f).

» Drill Problem 2.4 Continuing with Problem 2.3, explain how the rule of Eq. (2.32) can
be satisfied by the signal g(#) described therein. <

PROPERTY 9 Differentiation in the Time Domain Let g(t) == G(f) and assume
that the first derivative of g(t) with respect to time t is Fourier transformable. Then

d .
Eg(t) — 2mfG(f) (2.33)
That is, differentiation of a time function g(t) has the effect of multiplying its Fourier trans-
form G(f) by the purely imaginary factor j2f.

This result is obtained simply in two steps. In step 1, we take the first derivative of
both sides of the integral in Eq. (2.2) defining the inverse Fourier transform of G(f). In step
2, we interchange the operations of integration and differentiation.
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We may generalize Eq. (2.33) for higher order derivatives of the time function g()
as follows:

L) = (/G 2.34)

which includes Eq. (2.33) as a special case. Equation (2.34) assumes that the Fourier trans-
form of the higher order derivative of g(#) exists.

EXAMPLE 2.6 Unit Gaussian Pulse

Typically, a pulse signal g(#) and its Fourier transform G(f) have different mathematical forms.
This observation is illustrated by the Fourier-transform pairs studied in Examples 2.1 through 2.5.
In this example, we consider an exception to this observation. In particular, we use the differen-
tiation property of the Fourier transform to derive the particular form of a pulse signal that has
the same mathematical form as its own Fourier transform.

Let g(#) denote the pulse signal expressed as a function of time #, and G(f) denote its
Fourier transform. Differentiating the Fourier transform formula of Eq. (2.1) with respect to
frequency f, we may write

: .4
or, equivalently,
2mtg(t) — /difG(f) (2.35)
Suppose we now impose the following condition on the left-hand sides of Egs. (2.33) and (2.35):
d
Eg(t) = —27tg(t) (2.36)

Then in a corresponding way, it follows that the right-hand sides of these two equations must
(after cancelling the common multiplying factor j) satisfy the condition

d
ij(f) = —27fG(f) (2.37)

Equations (2.36) and (2.37) show that the pulse signal g(#) and its Fourier transform G(f) have
exactly the same mathematical form. In other words, provided that the pulse signal g(¢) sat-
isfies the differential equation (2.36), then G(f) = g(f), where g(f) is obtained from g(¢) by
substituting f for . Solving Eq. (2.36) for g(¢), we obtain

g(t) = exp(—mt?) (2.38)

The pulse defined by Eq. (2.38) is called a Gaussian pulse, the name being derived from the
similarity of the function to the Gaussian probability density function of probability theory (see
Chapter 8). It is shown plotted in Fig. 2.10. By applying Eq. (2.31), we find that the area under

80
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FIGURE 2.10
-047 0 047 Gaussian pulse.



CHAPTER 2 FOURIER REPRESENTATION OF SIGNALS AND SYSTEMS

this Gaussian pulse is unity, as shown by

(o]
/ exp(—mt?) dt = 1 (2.39)
—00

When the central ordinate and the area under the curve of a pulse are both unity, as in
Egs. (2.38) and (2.39), we say that the Gaussian pulse is a unit pulse. We conclude therefore
that the unit Gaussian pulse is its own Fourier transform, as shown by

exp(—mt?) == exp(—mf?) (2.40)

PROPERTY 10 Integration in the Time Domain Let g(¢) == G(f). Then provided
that G(0) = 0, we have

t .1
/_Oog(r) dr — jZWfG(f) (2.41)

That is, integration of a time function g(t) has the effect of dividing its Fourier transform
G(f) by the factor j2=f, provided that G(0) is zero.

This property is verified by expressing g(¢) as

«w =41 [ st ar]

and then applying the time-differentiation property of the Fourier transform to obtain

o) = n{e] [ stmyar]}

from which Eq. (2.41) follows immediately.

It is a straightforward matter to generalize Eq. (2.41) to multiple integration; how-
ever, the notation becomes rather cumbersome.

Equation (2.41) assumes that G(0)—that is, the area under g(¢)—is zero. The more
general case pertaining to G(0) # 0 is deferred to Section 2.4.

EXAMPLE 2.7 Triangular Pulse

Consider the doublet pulse g1(t) shown in Fig. 2.11(a). By integrating this pulse with respect
to time, we obtain the #riangular pulse g,(¢) shown in Fig. 2.11(b). We note that the doublet
pulse g;(#) consists of two rectangular pulses: one of amplitude A, defined for the interval
—T = t = 0; and the other of amplitude —A, defined for the interval 0 = ¢ = T. Applying
the time-shifting property of the Fourier transform to Eq. (2.10), we find that the Fourier
transforms of these two rectangular pulses are equal to AT sinc(fT) exp(jmfT) and
—AT sinc(fT) exp(—jmfT), respectively. Hence, invoking the linearity property of the Fourier
transform, we find that the Fourier transform G;(f) of the doublet pulse g;(¢) of Fig. 2.11(a)
is given by

Gi(f) = AT sinc(fT) [exp(mfT) — exp(—jmfT)]
= 2jAT sinc(fT) sin(7fT) (2.42)

We further note from Eq. (2.42) that G1(0) is zero. Hence, using Egs. (2.41) and (2.42), we
find that the Fourier transform G;,(f) of the triangular pulse g,(#) of Fig. 2.11(b) is given by
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&1(®)
A
t
-T 0 T
-A
(2)
&)
AT
T 0 T t FIGURE 2.11 (a) Doublet pulse g(%).
(b) Triangular pulse g,(#) obtained by
(b) integrating g1 (#) with respect to time .
Galf) = - Gi(f)
2 ]277_]( 1
sin(7fT)

= AT————sinc(fT)
wf
= AT? sinc?(fT) (2.43)

Note that the doublet pulse of Fig. 2.11(a) is real and odd-symmetric and its Fourier transform
is therefore odd and purely imaginary, whereas the triangular pulse of Fig. 2.11(b) is real and
symmetric and its Fourier transform is therefore symmetric and purely real.

EXAMPLE 2.8 Real and Imaginary Parts of a Time Function

Thus far in the chapter, we have discussed the Fourier representation of various signals, some
being purely real, others being purely imaginary, yet others being complex valued with real and
imaginary parts. It is therefore apropos that at this stage in the Fourier analysis of signals, we
use this example to develop a number of general formulas pertaining to complex signals and
their spectra.

Expressing a complex-valued function g() in terms of its real and imaginary parts, we
may write

8(2) = Re[g(#)] + jIm[g(2)] (2.44)

where Re denotes “the real part of” and Im denotes the “imaginary part of.” The complex con-
jugate of g() is defined by

g% (2) = Re[g(#)] — jIm[g(?)] (2.45)
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Adding Egs. (2.44) and (2.45) gives

Relz(1)] = 5 &(t) + £*(1)] 246

and subtracting them yields

Im{g(1)] = 3 [&(t) - ()] 247

Therefore, applying the conjugation rule of Eq. (2.22), we obtain the following two Fourier-
transform pairs:

Relg(1)] == S[G(f) + G*(~/)]
(2.48)

Im{g() == 2[G(f) = G*(~1)]

From the second line of Eq. (2.48), it is apparent that in the case of a real-valued time func-
tion g(t), we have G(f) = G*(—f); that is, the Fourier transform G(f) exhibits conjugate
symmetry, confirming a result that we stated previously in Section 2.2.

PROPERTY 11 Modulation Theorem Ler g(2) == Gy(f) and &(t) = G,(f).
Then

1 (Dg(t) = / GiN)Ga(f — 1) dA (2.49)

To prove this property, we first denote the Fourier transform of the product g;(#)g,(¢) by
G12(f), so that we may write

g1()g(t) == Gna(f)

where

Gur(f) = / &1 (Dea(t) exp(—2mft) dt

o0

For g(t), we next substitute the inverse Fourier transform
w0 = [ G esplanrn df
in the integral defining G1,(f) to obtain
Gu(f) = /_Z /_Zgl(t)Gz(f’) exp[ —j2m(f — [')t] df'dr

Define A = f — f'. Then, eliminating the variable f' and interchanging the order of inte-
gration, we obtain (after rearranging terms)

Ga(f) =/_ Ga(f = A)[/_ 81(t) exp(—j2mAr) dt | dA

assuming that f is fixed. The inner integral (inside the square brackets) is recognized sim-
ply as G1(A); we may therefore write
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Gur(f) = / GLN)Ga(f — 1) dA

o0

which is the desired result. This integral is known as the convolution integral expressed in
the frequency domain, and the function G,(f) is referred to as the convolution of G{(f)
and G,(f). We conclude that the multiplication of two signals in the time domain is trans-
formed into the convolution of their individual Fourier transforms in the frequency domain.
This property is also known as the modulation theorem. We have more to say on the prac-
tical implications of this property in subsequent chapters.

In a discussion of convolution, the following shorthand notation is frequently used:

Gua(f) = Gi(f) * Ga(f)

Accordingly, we may reformulate Eq. (2.49) in the following symbolic form:

81(1) () == Gi(f) * Ga(f) (2.50)

where the symbol % denotes convolution. Note that convolution is commutative; that is,

G1(f) * Ga(f) = Ga(f) * Gi(f)
which follows directly from Eq. (2.50).

PROPERTY 12 Convolution Theorem Let gi(2) == G4(f) and g(t) = G,(f).
Then

/_ gt - 7) dr = Gy()Gy(f) 2.51)

o0

Equation (2.51) follows directly by combining Property 4 (duality) and Property 11
(modulation). We may thus state that the convolution of two signals in the time domain is
transformed into the multiplication of their individual Fourier transforms in the frequency
domain. This property is known as the convolution theorem. Its use permits us to exchange
a convolution operation in the time domain for a multiplication of two Fourier transforms,
an operation that is ordinarily easier to manipulate. We have more to say on convolution
later in the chapter when the issue of filtering is discussed.

Using the shorthand notation for convolution, we may rewrite Eq. (2.51) in the sim-
ple form

g1(t) * g(t) == G1()Ga(f) (2.52)

Note that Properties 11 and 12, described by Egs. (2.49) and (2.51), respectively, are the
dual of each other.

» Drill Problem 2.5 Develop the detailed steps that show that the modulation and con-
volution theorems are indeed the dual of each other. <

PROPERTY 13 Correlation Theorem Let gi(2) == Gy(f) and g(t) = G,(f).
Then, assuming that g(t) and g,(t) are complex valued,

/ @085t — 7) di = G\(f)G3(f) 2.53)

where G5(f) is the complex conjugate of Gy(f), and 7 is the time variable involved in
defining the inverse Fourier transform of the product G{(f)G3(f).
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To prove Eq. (2.53), we begin by reformulating the convolution integral with the roles of
the time variables ¢ and 7 interchanged, in which case we may simply rewrite Eq. (2.51) as

o0
| _ap—nd = Gin6n (2.54
As already pointed out in the statement of Property 13, the inverse Fourier transform of
the product term G1(f)G,(f) has 7 as its time variable; that is, exp(j27f7) is its kernel. With
the formula of Eq. (2.54) at hand, Eq. (2.53) follows directly by combining reflection rule
(special case of the dilation property) and conjugation rule.

The integral on the left-hand side of Eq. (2.53) defines a measure of the similarity that
may exist between a pair of complex-valued signals. This measure is called correlation, on
which we have more to say later in the chapter.

» Drill Problem 2.6 Develop the detailed steps involved in deriving Eq. (2.53), starting
from Eq. (2.51). <

» Drill Problem 2.7 Prove the following properties of the convolution process:
(a) The commutative property: g1(2) * g2(¢) = g2(t) * g1(¢)
(b) The associative property:  g1(¢) * [g2(2) * g3(¢)] = [g1(t) * g2(2)] * g5(t)
(c) The distributive property:  g1(#) * [g2(2) + g3(2)] = g1(2) * &2(¢) + g1(¢) * g3(t)<

PROPERTY 14 Rayleigh’s Energy Theorem Let g(2) == G(f). Then

/_ g0 dt = / G df 2.55)

o0 o0

To prove Eq. (2.55), we set g1(¢t) = g(¢) = g(¢) in Eq. (2.53), in which case the correla-
tion theorem reduces to

/ e(g*(t — 7) dt == G(NG*(f) = [G()P

o0

In expanded form, we may write

[o.¢] o0
| g =ndi= [ 160 explizato) df (2.56)
—00 —00
Finally, putting 7 = 0 in Eq. (2.56) and recognizing that g(t)g*(¢) = |g(¢)[?, we get the
desired result.

Equation (2.55), known as Rayleigh’s energy theorem, states that the total energy of
a Fourier-transformable signal equals the total area under the curve of squared amplitude
spectrum of this signal. Determination of the energy is often simplified by invoking the
Rayleigh energy theorem, as illustrated in the following example.

EXAMPLE 2.9 Sinc Pulse (continued)

Consider again the sinc pulse A sinc (2W¢). The energy of this pulse equals

(o]
E = A? / sinc?(2Wt) dt

{o.]



2.3 The Inverse Relationship Between Time and Frequency 39

The integral in the right-hand side of this equation is rather difficult to evaluate. However, we
note from Example 2.4 that the Fourier transform of the sinc pulse A sinc(2W?t) is equal to
(A/2W) rect(f/2W); hence, applying Rayleigh’s energy theorem to the problem at hand, we
readily obtain the desired result:

o () [l
w
(&) oo

A2
= (2.57)
This example clearly illustrates the usefulness of Rayleigh’s energy theorem.
» Drill Problem 2.8 Considering the pulse function sinc(z), show that
L2 _
sinc”(¢) dt = 1.
I )

2.3 The Inverse Relationship
Between Time and Frequency

The properties of the Fourier transform discussed in Section 2.2 show that the time-domain
and frequency-domain descriptions of a signal are inversely related to each other. In par-
ticular, we may make two important statements:

1. If the time-domain description of a signal is changed, the frequency-domain descrip-
tion of the signal is changed in an inverse manner, and vice versa. This inverse rela-
tionship prevents arbitrary specifications of a signal in both domains. In other words,
we may specify an arbitrary function of time or an arbitrary spectrum, but we can-
not specify both of them together.

2. If a signal is strictly limited in frequency, the time-domain description of the sig-
nal will trail on indefinitely, even though its amplitude may assume a progres-
sively smaller value. We say a signal is strictly limited in frequency or strictly band
limited if its Fourier transform is exactly zero outside a finite band of frequen-
cies. The sinc pulse is an example of a strictly band-limited signal, as illustrated
in Fig. 2.8. This figure also shows that the sinc pulse is only asymprtotically lim-
ited in time. In an inverse manner, if a signal is strictly limited in time (i.e., the sig-
nal is exactly zero outside a finite time interval), then the spectrum of the signal
is infinite in extent, even though the amplitude spectrum may assume a progres-
sively smaller value. This behavior is exemplified by both the rectangular pulse
(described in Fig. 2.2) and the triangular pulse (described in Fig. 2.11(b)). Accord-
ingly, we may state that a signal cannot be strictly limited in both time and
frequency.

BANDWIDTH

The bandwidth of a signal provides a measure of the extent of the significant spectral con-
tent of the signal for positive frequencies. When the signal is strictly band limited, the band-
width is well defined. For example, the sinc pulse described in Fig. 2.8(a) has a bandwidth
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equal to W. However, when the signal is not strictly band limited, which is generally the
case, we encounter difficulty in defining the bandwidth of the signal. The difficulty arises
because the meaning of the word “significant” attached to the spectral content of the sig-
nal is mathematically imprecise. Consequently, there is no universally accepted definition
of bandwidth.

Nevertheless, there are some commonly used definitions for bandwidth. In this sec-
tion, we consider three such definitions; the formulation of each definition depends on
whether the signal is low-pass or band-pass. A signal is said to be low-pass if its significant
spectral content is centered around the origin f = 0. A signal is said be band-pass if its sig-
nificant spectral content is centered around *f., where f, is a constant frequency.

When the spectrum of a signal is symmetric with a main lobe bounded by well-defined
nulls (i.e., frequencies at which the spectrum is zero), we may use the main lobe as the
basis for defining the bandwidth of the signal. The rationale for doing so is that the main
spectral lobe contains the significant portion of the signal energy. If the signal is low-pass,
the bandwidth is defined as one half the total width of the main spectral lobe, since only
one half of this lobe lies inside the positive frequency region. For example, a rectangular
pulse of duration T seconds has a main spectral lobe of total width (2/T) hertz centered
at the origin, as depicted in Fig. 2.2(b). Accordingly, we may define the bandwidth of this
rectangular pulse as (1/T) hertz. If, on the other hand, the signal is band-pass with main
spectral lobes centered around *f,, where f. is large, the bandwidth is defined as the width
of the main lobe for positive frequencies. This definition of bandwidth is called the null-
to-null bandwidth. For example, an RF pulse of duration T seconds and frequency £, has
main spectral lobes of width (2/T) hertz centered around *f,, as depicted in Fig. 2.9(b).
Hence, we may define the null-to-null bandwidth of this RF pulse as (2/T) hertz. On the
basis of the definitions presented here, we may state that shifting the spectral content of a
low-pass signal by a sufficiently large frequency has the effect of doubling the bandwidth
of the signal. Such a frequency translation is attained by using the process of modulation,
which is discussed in detail in Chapter 3.

Another popular definition of bandwidth is the 3-dB bandwidth. Specifically, if the
signal is low-pass, the 3-dB bandwidth is defined as the separation between zero frequency,
where the amplitude spectrum attains its peak value, and the positive frequency at which
the amplitude spectrum drops to 1/V2 of its peak value. For example, the decaying expo-
nential and rising exponential pulses defined in Fig. 2.4 have a 3-dB bandwidth of (a/2)
hertz. If, on the other hand, the signal is band-pass, centered at *f., the 3-dB bandwidth
is defined as the separation (along the positive frequency axis) between the two frequen-
cies at which the amplitude spectrum of the signal drops to 1/V2 of the peak value at f,.
The 3-dB bandwidth has an advantage in that it can be read directly from a plot of the ampli-
tude spectrum. However, it has a disadvantage in that it may be misleading if the ampli-
tude spectrum has slowly decreasing tails.

Yet another measure for the bandwidth of a signal is the root mean-square (rms)
bandwidth, defined as the square root of the second moment of a properly normalized
form of the squared amplitude spectrum of the signal about a suitably chosen point. We
assume that the signal is low-pass, so that the second moment may be taken about the ori-
gin. As for the normalized form of the squared amplitude spectrum, we use the nonnega-

tive function |G(f)[? / / |G(f)|? df, in which the denominator applies the correct nor-

malization in the sense that the integrated value of this ratio over the entire frequency axis
is unity. We may thus formally define the rms bandwidth of a low-pass signal g(#) with
Fourier transform G(f) as follows:
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= AL
/ PGP df
/!G(f)lzdf

oo

Wims (2.58)

An attractive feature of the rms bandwidth W, is that it lends itself more readily to math-
ematical evaluation than the other two definitions of bandwidth, although it is not as eas-
ily measured in the laboratory.

TiME-BANDWIDTH PRODUCT

For any family of pulse signals that differ by a time-scaling factor, the product of the sig-
nal’s duration and its bandwidth is always a constant, as shown by

(duration) X (bandwidth) = constant

The product is called the time-bandwidth product or bandwidth-duration product. The
constancy of the time-bandwidth product is another manifestation of the inverse relation-
ship that exists between the time-domain and frequency-domain descriptions of a signal.
In particular, if the duration of a pulse signal is decreased by compressing the time scale by
a factor a, say, the frequency scale of the signal’s spectrum, and therefore the bandwidth
of the signal, is expanded by the same factor a, by virtue of Property 2 (dilation), and the
time-bandwidth product of the signal is thereby maintained constant. For example, a rec-
tangular pulse of duration T seconds has a bandwidth (defined on the basis of the positive-
frequency part of the main lobe) equal to (1/T) hertz, making the time-bandwidth product
of the pulse equal unity. The important point to note here is that whatever definition we
use for the bandwidth of a signal, the time-bandwidth product remains constant over cer-
tain classes of pulse signals. The choice of a particular definition for bandwidth merely
changes the value of the constant.

To be more specific, consider the rms bandwidth defined in Eq. (2.58). The corre-
sponding definition for the rms duration of the signal g(#) is

o0 12
/ gt de
T = | s (2.59)

/ gt dt

where it is assumed that the signal g(#) is centered around the origin. It may be shown that
using the rms definitions of Egs. (2.58) and (2.59), the time-bandwidth product has the fol-
lowing form:

Tt ms Wims (2.60)

1
> —
4
where the constant is (1/44). It may also be shown that the Gaussian pulse satisfies this

condition with the equality sign. For the details of these calculations, the reader is referred
to Problem 2.51.
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2.4 Dirac Delta Function

Strictly speaking, the theory of the Fourier transform, as described in Sections 2.2 and 2.3,
is applicable only to time functions that satisfy the Dirichlet conditions. Such functions
include energy signals—that is, signals for which the condition

/_oolgu)l2 dt <

holds. However, it would be highly desirable to extend the theory in two ways:

1. To combine the theory of Fourier series and Fourier transform into a unified frame-
work, so that the Fourier series may be treated as a special case of the Fourier trans-
form. (A review of the Fourier series is presented in Appendix 2.)

2. To expand applicability of the Fourier transform to include power signals—that is,
signals for which the condition

1 T
lim —— £)|* dt < o
Jim o7 | @)
holds.

It turns out that both of these objectives are met through the “proper use” of the Dirac delta
function or unit impulse.

The Dirac delta function, denoted by 8(t), is defined as having zero amplitude every-
where except at ¢ = 0, where it is infinitely large in such a way that it contains unit area
under its curve. Specifically, 8(¢) satisfies the pair of relations

é(t) = 0, t#0 (2.61)
and

o0
/ o(t)dt =1 (2.62)
—0o0

An implication of this pair of relations is that the delta function 8(¢) must be an even func-
tion of time ¢.

For the delta function to have meaning, however, it has to appear as a factor in the
integrand of an integral with respect to time and then, strictly speaking, only when the
other factor in the integrand is a continuous function of time. Let g(#) be such a function,
and consider the product of g(#) and the time-shifted delta function 8(¢ — #y). In light of
the two defining equations (2.61) and (2.62), we may express the integral of the product
g(#)8(¢ — ty) with respect to time ¢ as follows:

o0
[ stoste = ) de = gt (2.6
-0
The operation indicated on the left-hand side of this equation sifts out the value g(#y) of
the function g(¢) at time ¢ = #y, where — < t < . Accordingly, Eq. (2.63) is referred to
as the sifting property of the delta function. This property is sometimes used as the defin-
ing equation of a delta function; in effect, it incorporates Egs. (2.61) and (2.62) into a sin-
gle relation.

Noting that the delta function 8(¢) is an even function of #, we may rewrite Eq. (2.63)
in a way that emphasizes its resemblance to the convolution integral, as shown by

/ g(7)8(¢t — 7) dr = g(2) (2.64)

o0
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FIGURE 2.12 (a) The Dirac delta function 8(%). (b) Spectrum of 8(¢).

or, using the notation for convolution:

8(t) * 8(z) = g(2)
In words, the convolution of any time function g(#) with the delta function §(¢) leaves that
function completely unchanged. We refer to this statement as the replication property of

the delta function.
By definition, the Fourier transform of the delta function is given by

F[8(t)]=/_ 8(t) exp(—j2ft) dt

Hence, using the sifting property of the delta function and noting that exp(—j2/ft) is equal
to unity at ¢ = 0, we obtain

E[5(z)] =1
We thus have the Fourier-transform pair for the Dirac delta function:
o(t) =— (2.65)

This relation states that the spectrum of the delta function 8(¢) extends uniformly over the
entire frequency interval, as shown in Fig. 2.12.

It is important to realize that the Fourier-transform pair of Eq. (2.65) exists only in
a limiting sense. The point is that no function in the ordinary sense has the two properties
of Egs. (2.61) and (2.62) or the equivalent sifting property of Eq. (2.63). However, we can
imagine a sequence of functions that have progressively taller and thinner peaks at # = 0,
with the area under the curve remaining equal to unity, whereas the value of the function
tends to zero at every point except ¢ = 0, where it tends to infinity. That is, we may view
the delta function as the limiting form of a pulse of unit area as the duration of the pulse
approaches zero. It is immaterial what sort of pulse shape is used.

In a rigorous sense, the Dirac delta function belongs to a special class of functions
known as generalized functions or distributions. Indeed, in some situations its use requires
that we exercise considerable care. Nevertheless, one beautiful aspect of the Dirac delta func-
tion lies precisely in the fact that a rather intuitive treatment of the function along the lines
described herein often gives the correct answer.

EXAMPLE 2.10 The Delta Function as a Limiting Form of the Gaussian Pulse

Consider a Gaussian pulse of unit area, defined by

2
g(t) = iexp(—i) (2.66)
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where 7 is a variable parameter. The Gaussian function g(#) has two useful properties: (1) its
derivatives are all continuous, and (2) it dies away more rapidly than any power of ¢. The delta
function 8(#) is obtained by taking the limit 7 — 0. The Gaussian pulse then becomes infi-
nitely narrow in duration and infinitely large in amplitude, yet its area remains finite and fixed
at unity. Figure 2.13(a) illustrates the sequence of such pulses as the parameter 7 is permitted
to decrease.

The Gaussian pulse g(z), defined here, is the same as the unit Gaussian pulse exp(—t2)
derived in Example 2.6, except for the fact that it is now scaled in time by the factor 7 and scaled
in amplitude by the factor 1/7. Therefore, applying the linearity and dilation properties of the
Fourier transform to the Fourier transform pair of Eq. (2.40), we find that the Fourier transform
of the Gaussian pulse g(#) defined in Eq. (2.66) is also Gaussian, as shown by

G(f) = exp(—m7f?)

g()

G(f)

FIGURE 2.13

f  (a) Gaussian pulses of
varying duration.

(b) (b) Corresponding spectra.

-1.0 -0.5 0 0.5 1.0



2.4 Dirac Delta Function 45

Figure 2.13(b) illustrates the effect of varying the parameter 7 on the spectrum of the Gauss-
ian pulse g(#). Thus putting 7 = 0, we find, as expected, that the Fourier transform of the
delta function is unity.

APPLICATIONS OF THE DELTA FUNCTION

1. dc Signal.
By applying the duality property to the Fourier-transform pair of Eq. (2.65) and noting that
the delta function is an even function, we obtain

1 = 5(f) (2.67)

Equation (2.67) states that a dc signal is transformed in the frequency domain into a delta
function 8(¢) occurring at zero frequency, as shown in Fig. 2.14. Of course, this result is
intuitively satisfying.

Invoking the definition of Fourier transform, we readily deduce from Eq. (2.67) the
useful relation

/ exp(—j2mft) dt = 5(f)

Recognizing that the delta function 8(f) is real valued, we may simplify this relation as
follows:

/_00 cos(2mft) dt = 8(f) (2.68)

o
which provides yet another definition for the delta function, albeit in the frequency domain.

2. Complex Exponential Function.
Next, by applying the frequency-shifting property to Eq. (2.67), we obtain the Fourier-
transform pair

exp(j2mf,t) = 8(f - f,) (2.69)

for a complex exponential function of frequency f.. Equation (2.69) states that the com-
plex exponential function exp(j27f.t) is transformed in the frequency domain into a delta
function 8(f — f.) occurring at f = f..

&) G(f)

0 0
(@) ()
FIGURE 2.14 (a) dc signal. (b) Spectrum.



CHAPTER 2 FOURIER REPRESENTATION OF SIGNALS AND SYSTEMS

G(f)
8@

-1.0
il
fe
(a) (b)

FIGURE 2.15 (a) Cosine function. (b) Spectrum.

3. Sinusoidal Functions.
Consider next the problem of evaluating the Fourier transform of the cosine function
cos(2mf.t). We first use Euler’s formula to write

cos(2mf,t) = %[exp(jZTrfct) + exp(—j27f.t)] (2.70)

Therefore, using Eq. (2.69), we find that the cosine function cos(2f.t) is represented by
the Fourier-transform pair

1
cos(2mfct) == J[8(f = fo) + &(F + [)] (2.71)
In other words, the spectrum of the cosine function cos(27f.t) consists of a pair of delta
functions occurring at f = *f., each of which is weighted by the factor 1/2, as shown in
Fig. 2.15.

Similarly, we may show that the sine function sin(27f,#) is represented by the Fourier-
transform pair

sin(2mf,r) = 21].[6« —f) =8+ )] 2.72)

which is illustrated in Fig. 2.16.

iG(f)
g(@)

1.0 [
' _fc f
-1.0
Sy
fe
)

FIGURE 2.16 (a) Sine function. (b) Spectrum.

(a (b)
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» Drill Problem 2.9 Determine the Fourier transform of the squared sinusoidal signals:
(i) g(t) = cos*(2mf.1)
(ii) g(t) = sin*(2mf.t) <

4. Signum Function.

The signum function sgn(t) equals +1 for positive time and —1 for negative time, as shown
by the solid curve in Fig. 2.17(a). The signum function was defined previously in Eq. (2.18);
this definition is reproduced here for convenience of presentation:

+1, t>0
sgn(t) = 0, t=0
-1, <0

The signum function does not satisfy the Dirichlet conditions and therefore, strictly speak-
ing, it does not have a Fourier transform. However, we may define a Fourier transform for

the signum function by viewing it as the limiting form of the odd-symmetric double-
exponential pulse

exp(—at), t>0
g(t) =140, t=0 (2.73)
—exp(at), t<0

as the parameter a approaches zero. The signal g(¢), shown as the dashed curve in
Fig. 2.17(a), does satisfy the Dirichlet conditions. Its Fourier transform was derived in

g@)

+1.0
N
AN
\\\\
- t
——— 0
N
AN
\

A _1.0
(@)

G ()l

7> N\

/ \
i/ \ |/ A\

V1
\1
W FIGURE 2.17 (a) Signum function
‘ll (continuous curve), and double-
| exponential pulse (dashed curve).
|

f (b) Amplitude spectrum of sighum
function (continuous curve), and
that of double-exponential pulse
(dashed curve).
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Example 2.3; the result is given by [see Eq. (2.19)]:
—j4af

C0 = Gy

The amplitude spectrum |G(f)| is shown as the dashed curve in Fig. 2.17(b). In the limit
as a approaches zero, we have

L —4jmf
F[Sgn(t)] - ali% az + (2777[)2
_ b
jmf
That is,
1
sgn(t) — — 2.74
gn(?) pr (2.74)

The amplitude spectrum of the signum function is shown as the continuous curve in
Fig. 2.17(b). Here we see that for small a4, the approximation is very good except near the
origin on the frequency axis. At the origin, the spectrum of the approximating function g(z)
is zero for a > 0, whereas the spectrum of the signum function goes to infinity.

5. Unit Step Function.
The unit step function u(t) equals +1 for positive time and zero for negative time. Previ-
ously defined in Eq. (2.11), it is reproduced here for convenience:

1, t>0
1

u(t) = 5 t=20
0, t<0

The waveform of the unit step function is shown in Fig. 2.18(a). From this defining equa-
tion and that of the signum function, or from the waveforms of Figs. 2.17(a) and 2.18(a),
we see that the unit step function and signum function are related by

1
u(t) = E[sgn((t) +1)] (2.75)
Hence, using the linearity property of the Fourier transform and the Fourier-transform

pairs of Egs. (2.67) and (2.75), we find that the unit step function is represented by the
Fourier-transform pair

80 |G

0 0
() (b)

FIGURE 2.18 (a) Unit step function. (b) Amplitude spectrum.
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1 1
) — —— + =8 2.76
u(t) == 5+ 35(1) (2.76)
This means that the spectrum of the unit step function contains a delta function weighted
by a factor of 1/2 and occurring at zero frequency, as shown in Fig. 2.18(b).

6. Integration in the Time Domain (Revisited).
The relation of Eq. (2.41) describes the effect of integration on the Fourier transform of a
signal g(#), assuming that G(0) is zero. We now consider the more general case, with no
such assumption made.

Let

y(t) = /_ g(r) dr (2.77)

The integrated signal y(¢) can be viewed as the convolution of the original signal g(#) and
the unit step function u(t), as shown by

y(t) = / g(ryu(t — 7) dr

o0

where the time-shifted unit step function u(¢ — 7) is itself defined by

1, =<t
1

u(t — 1) = 5 T=1
0, 7>1

Recognizing that convolution in the time domain is transformed into multiplication in the
frequency domain in accordance with Property 12, and using the Fourier-transform pair
of Eq. (2.76) for the unit step function u(t), we find that the Fourier transform of y(z) is

V() = ()| 7 + 5900 278

where G(f) is the Fourier transform of g(¢). According to the sifting property of a delta
function formulated in the frequency domain, we have

G()a(f) = G(0)s(f)
Hence, we may rewrite Eq. (2.78) in the equivalent form:

Y(f) = 526 (f) + 5 G(0)a(f)

In general, the effect of integrating the signal g(¢) is therefore described by the Fourier-
transform pair

/_Oog(f) dr — j2177fG(f) + %G(O)S(f) (2.79)

This is the desired result, which includes Eq. (2.41) as a special case (i.e., G(0) = 0).

» Drill Problem 2.10 Consider the function

g(t) = S(t + %) - 6(t - %)
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. . . . 1 . .
which consists of the difference between two delta functions at t = * 5 The integration of

g(#) with respect to time # yields the unit rectangular function rect(¢). Using Eq. (2.79), show that

rect(z) == sinc(f)
which is a special form of Eq. (2.10). <

2.5 Fourier Transforms
of Periodic Signals

It is well known that by using the Fourier series, a periodic signal can be represented as a
sum of complex exponentials. (Appendix 2 presents a review of the Fourier series.) Also,
in a limiting sense, Fourier transforms can be defined for complex exponentials, as demon-
strated in Egs. (2.69), (2.71), and (2.72). Therefore, it seems reasonable to represent a peri-
odic signal in terms of a Fourier transform, provided that this transform is permitted to
include delta functions.

Consider then a periodic signal gr,(#), where the subscript Ty denotes the period of
the signal. We know that gr,(#) can be represented in terms of the complex exponential
Fourier series as (see Appendix 2)

gr(t) = 3 cyexp(2mnfor) (2.80)

n=—o0

where c,, is the complex Fourier coefficient, defined by

1 T2
¢y = / gr,(t) exp(—j2mnfot) dt (2.81)
1o J-1,2
and fj is the fundamental frequency defined as the reciprocal of the period Tj; that is,
1
- 2.82
fo T (2.82)
Let g(#) be a pulselike function, which equals g7, (#) over one period and is zero elsewhere;
that is,
T To
t - =t=—
2(2) gry (1), 5 3 o
0, elsewhere )

The periodic. signal gr,(¢) may now be expressed in terms of the function g(#) as the infi-
nite summation

o0
gr)(t) = > gt —mh) (2.84)
m=—co
Based on this representation, we may view g(#) as a generating function, in that it gener-
ates the periodic signal gr,(¢). Being pulselike with some finite energy, the function g(t) is
Fourier transformable. Accordingly, in light of Egs. (2.82) and (2.83), we may rewrite the
formula for the complex Fourier coefficient ¢, as follows:

o = / o(t) exp(—j2mfir) dt

(0.9)

= foG(nfy) (2.85)
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where G(#nfy) is the Fourier transform of g(z), evaluated at the frequency f = nfy. We may
thus rewrite the formula of Eq. (2.80) for the reconstruction of the periodic signal
gr,(t) as

o0

gry(t) = fo _2 G(nfo) exp(j2mnfot) (2.86)
Therefore, eliminating gTO(t) between Egs. (2.84) and (2.86), we may now write

o0 oo

S st -mhy)=fo S Glnfo) exp(i2mnfyt (2.87)
which defines one form of Poisson’s sum formula.
Finally, using Eq. (2.69), which defines the Fourier transform of a complex expo-
nential function, in Eq. (2.87), we deduce the Fourier-transform pair:

o0 o0

> gt -mh) = fy X Gufy)s(f — nfy) (2.88)
m=—00 n=—0oo

for the periodic signal gr,(#) whose fundamental frequency fo = (1/Tp). Equation (2.88)
simply states that the Fourier transform of a periodic signal consists of delta functions
occurring at integer multiples of the fundamental frequency fy, including the origin, and
that each delta function is weighted by a factor equal to the corresponding value of G(nfy).
Indeed, this relation merely provides a method to display the frequency content of the peri-
odic signal gr,(2).

It is of interest to observe that the pulselike function g(¢), constituting one period of
the periodic signal gr,(¢), has a continuous spectrum defined by G(f). On the other hand,
the periodic signal gr,(¢) itself has a discrete spectrum. In words, we may therefore sum
up the transformation embodied in Eq. (2.88) as follows:

Periodicity in the time domain has the effect of changing the spectrum of a pulse-
like signal into a discrete form defined at integer multiples of the fundamental fre-
quency, and vice versa.

EXAMPLE 2.11 Ideal Sampling Function

An ideal sampling function, or Dirac comb, consists of an infinite sequence of uniformly spaced
delta functions, as shown in Fig. 2.19(a). We denote this waveform by

dry(t) = > 8(t — mTy) (2.89)

m=—00

We observe that the generating function g(¢) for the ideal sampling function 87, (#) consists sim-
ply of the delta function 8(¢). We therefore have G(f) = 1, and

G(nfy) =1 for all n
Thus, the use of Eq. (2.88) yields the new result

(o] (o]
> 8t —mhy) = fo X 8(f— nfy) (2.90)
m=—00 n=-o0
Equation (2.90) states that the Fourier transform of a periodic train of delta functions, spaced
Ty seconds apart, consists of another set of delta functions weighted by the factor fy = (1/T)
and regularly spaced f Hz apart along the frequency axis as in Fig. 2.19(b). In the special case
of Ty = 1, a periodic train of delta functions is, like a Gaussian pulse, its own Fourier transform.
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5T0(t)
1
33T, 2T, T, 0 T 2T, 3T,
(@)
o7, (0
| | | | f
5 4 3 2 1 0 1 2 3 4 5
Ty, T, Ty, To To Ty, T, To To To
(b)

FIGURE 2.19 (a) Dirac comb. (b) Spectrum.

Applying the inverse Fourier transform to the right-hand side of Eq. (2.90), we get the
relationship

o0 o0

X 8t —mh) =fo X exp(2mnfyt) (2.91)
On the other hand, applying the Fourier transform to the left-hand side of Eq. (2.90), we get
the dual relationship:

[e0]

Ty > exp(RamfTy) = 2, 8(f — nfy) (2.92)
m=—0o0 n=—0o0
where we have used the relation of Eq. (2.82) rewritten in the form Ty = 1/f. Equations (2.91)
and (2.92) are the dual of each other, in that in the delta functions show up in the time domain
in Eq. (2.91) whereas in Eq. (2.92) the delta functions show up in the frequency domain.

mulate Egs. (2.91) and (2.92) in terms of cosinusoidal functions.

2.6 Transmission of Signals Through

Linear Systems: Convolution Revisited

1
Using the Euler formula cos x = ) [exp(jx) + exp(—jx)], refor-

<

With the Fourier transform theory presented in the previous sections at our disposal, we are
now ready to turn our attention to the study of a special class of systems known to be linear.
A system refers to any physical device or phenomenon that produces an output signal in
response to an input signal. It is customary to refer to the input signal as the excitation and to
the output signal as the response. In a linear system, the principle of superposition holds; that
is, the response of a linear system to a number of excitations applied simultaneously is equal
to the sum of the responses of the system when each excitation is applied individually. Impor-
tant examples of linear systems include filters and communication channels operating in their



2.6 Transmission of Signals Through Linear Systems: Convolution Revisited 53

linear region. A filter refers to a frequency-selective device that is used to limit the spectrum of
a signal to some band of frequencies. A channel refers to a physical medium that connects the
transmitter and receiver of a communication system. We wish to evaluate the effects of trans-
mitting signals through linear filters and communication channels. This evaluation may be
carried out in two ways, depending on the description adopted for the filter or channel. That
is, we may use time-domain or frequency-domain ideas, as described below.

TiME RESPONSE

In the time domain, a linear system is described in terms of its impulse response, which is
defined as the response of the system (with zero initial conditions) to a unit impulse or
delta function 5(t) applied to the input of the system. If the system is time invariant, then
this property implies that a time-shifted unit impulse at the input of the system produces
an impulse response at the output, shifted by exactly the same amount. In other words, the
shape of the impulse response of a linear time-invariant system is the same no matter when
the unit impulse is applied to the system. Thus, assuming that the unit impulse or delta func-
tion is applied at time ¢ = 0, we may denote the impulse response of a linear time-invariant
system by h(2). Let this system be subjected to an arbitrary excitation x(2), as in Fig. 2.20(a).
To determine the response y(¢) of the system, we begin by first approximating x(#) by a
staircase function composed of narrow rectangular pulses, each of duration A7, as shown
in Fig. 2.20(b). Clearly the approximation becomes better for smaller A7. As At approaches
zero, each pulse approaches, in the limit, a delta function weighted by a factor equal to the
height of the pulse times A7. Consider a typical pulse, shown shaded in Fig. 2.20(b), which
occurs at ¢t = 7. This pulse has an area equal to x(7)Ar. By definition, the response of the
system to a unit impulse or delta function 8(¢), occurring at ¢ = 0, is h(¢). It follows there-
fore that the response of the system to a delta function, weighted by the factor x(7)Ar and
occurring at ¢ = 7, must be x(7)h(¢ — 7)A7. To find the response y(¢) at some time ¢, we

Input Impulse Output
X —> response —_—
® het) y(®)
(a)
x(t)
=
\

x(7) \

approximation

FIGURE 2.20 (a) Linear
—>| At | system with input x(#) and
output y(). (b) Staircase
(b approximation of input x(¢).
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apply the principle of superposition. Thus, summing the various infinitesimal responses
due to the various input pulses, we obtain in the limit, as A7 approaches zero,

y(t) = / x(T)b(t — 1) dr (2.93)

oo

This relation is called the convolution integral.

In Eq. (2.93), three different time scales are involved: excitation time 7, response time
t, and system-memory time (¢ — 7). This relation is the basis of time-domain analysis of
linear time-invariant systems. It states that the present value of the response of a linear
time-invariant system is a weighted integral over the past history of the input signal,
weighted according to the impulse response of the system. Thus, the impulse response acts
as a memory function for the system.

In Eq. (2.93), the excitation x(2) is convolved with the impulse response h(t) to pro-
duce the response y(t). Since convolution is commutative, it follows that we may also write

y(t) = / h(r)x(t — 7) dr (2.94)

oo

where h(t) is convolved with x(t).

EXAMPLE 2.12 Tapped-Delay-Line Filter
Consider a linear time-invariant filter with impulse response »(¢). We make two assumptions:

1. Causality, which means that the impulse response /(%) is zero for t < 0.

2. Finite support, which means that the impulse response of the filter is of some finite dura-
tion Tz, so that we may write h(¢) = 0 for ¢ = Tp.

Under these two assumptions, we may express the filter output y(#) produced in response to
the input x(¢) as

Tf
y(t) = A h(r)x(t — 7) dr (2.95)

Let the input x(2), impulse response h(¢), and output y(¢) be uniformly sampled at the rate
(1/A7) samples per second, so that we may put

t=nA7t
and
T=FkAT

where k and 7 are integers, and A7 is the sampling period. Assuming that A7 is small enough
for the product h(7)x(¢ — 7) to remain essentially constant for k A7 = 7 =< (k + 1) Ar for
all values of k and 7, we may approximate Eq. (2.95) by a convolution sum as shown by
N-1
y(n At) = > h(k AT)x(n AT — k A7) AT
k=0

where N At = Ty. Define the weight
wy, = h(k A7) A7, k=0,1,...,N—1 (2.96)

We may then rewrite the formula for y(n A7) as

N-1
y(n At) = D wpx(n At — k A7) (2.97)
k=0
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Sampled input
x(nAT)
Delay Delay . Delay Delay __
At At At At
Weights w, wy w, wyn_3 WN_ WN_|
%z,

l

Sampled output
y(nAt)

FIGURE 2.21 Tapped-delay-line filter.

Equation (2.97) may be realized using the structure shown in Fig. 2.21, which consists of a set
of delay elements (each producing a delay of At seconds), a set of multipliers connected to the
delay-line taps, a corresponding set of weights supplied to the multipliers, and a summer for
adding the multiplier outputs. This structure is known as a tapped-delay-line filter or transversal
filter. Note that in Fig. 2.21 the tap-spacing or basic increment of delay is equal to the sam-
pling period of the input sequence {x(n A7)}.

CAUSALITY AND STABILITY

A system is said to be causal if it does not respond before the excitation is applied. For a
linear time-invariant system to be causal, it is clear that the impulse response »(¢) must van-
ish for negative time, as stated in Example 2.12. That is, we may formally state that the nec-
essary and sufficient condition for a linear time-invariant system to be causal is

h(t) =0, t<0 (2.98)

Clearly, for a system operating in real time to be physically realizable, it must be causal.
However, there are many applications in which the signal to be processed is only available
in stored form; in these situations, the system can be noncausal and yet physically realizable.

The system is said to be stable if the output signal is bounded for all bounded input
signals. We refer to this requirement as the bounded input—-bounded output (BIBO) stabil-
ity criterion, which is well suited for the analysis of linear time-invariant systems. Let the
input signal x(#) be bounded, as shown by

lx(t)| < M for all ¢

where M is a positive real finite number. Taking the absolute values of both sides of
Eq. (2.94), we have

ly(2)] = ‘/Ooh(ﬂ')x(t —7)dr (2.99)
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Next, we recognize that the absolute value of an integral is bounded by the integral of the
absolute value of the integrand, as shown by
= / |h(T)x(t — 7)| dr

’/ x(t — 7)dr
_ M/_Z|b(r)|dr

Hence, substituting this inequality into Eq. (2.99) yields the important result

ﬂMSMllwﬂm

It follows therefore that for a linear time-invariant system to be stable, the impulse response
h(t) must be absolutely integrable. That is, the necessary and sufficient condition for BIBO
stability of a linear time-invariant system is described by

/ |h(2)| dt < o (2.100)

o0

where h(t) is the impulse response of the system.

FREQUENCY RESPONSE

Consider next a linear time-invariant system of impulse response /(¢), which is driven by
a complex exponential input of unit amplitude and frequency f; that is,

x(t) = exp(j2nft) (2.101)

Using Eqgs. (2.101) in (2.94), the response of the system is obtained as

ym=/bmwwhm—m%
= exp(jlﬂ'ft)/_ h(71) exp(—j2mfr) dr (2.102)

Define the transfer function or frequency response of the system as the Fourier transform
of its impulse response, as shown by

H(f) = / ) exp(—j2mft) dt (2.103)

The terms transfer function and frequency response are used interchangably. The integral
in the last line of Eq. (2.102) is the same as that of Eq. (2.103), except for the fact that 7
is used in place of ¢. Hence, we may rewrite Eq. (2.102) in the form

y(¢) = H(f) exp(j2mft) (2.104)

Equation (2.104) states that the response of a linear time-invariant system to a complex
exponential function of frequency [ is the same complex exponential function multiplied
by a constant coefficient H(f).
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Equation (2.103) is one definition of the transfer function H(f). An alternative defi-
nition of the transfer function may be deduced by dividing Eq. (2.104) by (2.101) to obtain
y(2)

H(ﬁ=m

Consider next an arbitrary signal x(¢) applied to the system. The signal x(#) may be
expressed in terms of its inverse Fourier transform as

(2.105)

x(t) =exp(j2mft)

x(t) = /_ X(f) exp(j2mft) df (2.106)

o0

Equivalently, we may express x(¢) in the limiting form

o0

x(t) = lim D X(f) exp(j2mft) Af (2.107)
A0 =00
f=kaf
That is, the input signal x(#) may be viewed as a superposition of complex exponentials
of incremental amplitude. Because the system is linear, the response to this superposition

of complex exponential inputs is given by

oo

=[  H{)X(f) exp(j2nft) df (2.108)

-0
The Fourier transform of the output signal y(t) is therefore readily obtained as

Y(f) = H(/)X(f) (2.109)

According to Eq. (2.109), a linear time-invariant system may thus be described quite sim-
ply in the frequency domain by noting that the Fourier transform of the output is equal to
the product of the frequency response of the system and the Fourier transform of the input.

Of course, we could have deduced the result of Eq. (2.109) directly by recognizing two
facts:

1. The response y(t) of a linear time-invariant system of impulse response b(t) to an arbi-
trary input x(z) is obtained by convolving x(z#) with h(z), in accordance with
Eq. (2.93).

2. The convolution of a pair of time functions is transformed into the multiplication of
their Fourier transforms.

The alternative derivation of Eq. (2.109) above is presented primarily to develop an under-
standing of why the Fourier representation of a time function as a superposition of com-
plex exponentials is so useful in analyzing the behavior of linear time-invariant systems.

The frequency response H(f) is a characteristic property of a linear time-invariant sys-
tem. It is, in general, a complex quantity, so that we may express it in the form

H(f) = |H(f)| exp[iB(f)] (2.110)

where |H(f)| is called the amplitude response or magnitude response, and B(f) the phase
or phase response. In the special case of a linear system with real-valued impulse response
h(t), the frequency response H(f) exhibits conjugate symmetry, which means that

[H()| = [H(=£)]
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and

B(f) = —B(=/)

That is, the amplitude response |H(f)| of a linear system with real-valued impulse response
is an even function of frequency, whereas the phase B(f) is an odd function of frequency.

In some applications it is preferable to work with the logarithm of H(f), expressed
in polar form, rather than with H(f) itself. Define the natural logarithm

In H(f) = a(f) + jB(f) (2.111)

where
a(f) = In[H(f)| (2.112)

The function «(f) is one definition of the gain of the system. It is measured in nepers,
whereas the phase B(f) is measured in radians. Equation (2.111) indicates that the gain «(f)
and phase B(f) are the real and imaginary parts of the natural logarithm of the frequency
response H(f), respectively. The gain may also be expressed in decibels (dB) by using the
definition

a'(f) = 20 logolH(f)| (2.113)
The two gain functions a(f) and o’ (f) are related by
a' (f) = 8.69a(f) (2.114)

That is, 1 neper is equal to 8.69 dB.

From the discussion presented Section 2.3, we note that the bandwidth of a system
is specified by the constancy of its amplitude response. The bandwidth of a low-pass sys-
tem is thus defined as the frequency at which the amplitude response [H(f)| is 1/V2 times
its value of zero frequency or, equivalently, the frequency at which the gain o'(f) drops by
3 dB below its value at zero frequency, as illustrated in Fig. 2.22(a). Correspondingly, the
bandwidth of a band-pass system is defined as the range of frequencies over which the
amplitude response |[H(f)| remains within 1/V/2 times its value at the mid-band frequency,
as illustrated in Fig. 2.22(b).

PALEY—WIENER CRITERION

A necessary and sufficient condition for a function a(f) to be the gain of a causal filter is

the convergence of the integral.
/ |a(f)|2 df < = (2.115)
—o\1 +f

This condition is known as the Paley—Wiener criterion. It states that, provided the gain
a(f) satisfies the condition of Eq. (2.115), then we may associate with this gain a suitable
phase B(f) such that the resulting filter has a causal impulse response that is zero for neg-
ative time. In other words, the Paley—Wiener criterion is the frequency-domain equivalent
of the causality requirement. A system with a realizable gain characteristic may have infi-
nite attenuation [i.e., a(f) = —] for a discrete set of frequencies, but it cannot have infi-
nite attenuation over a band of frequencies; otherwise, the Paley—Wiener criterion is violated.

» Drill Problem 2.12 Discuss the following two issues, citing examples for your answers:
(a) Is it possible for a linear time-invariant system to be causal but unstable?
(b) Is it possible for such a system to be noncausal but stable? <
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FIGURE 2.22 [llustration of the definition of system bandwidth.
(a) Low-pass system. (b) Band-pass system.

» Drill Problem 2.13 The impulse response of a linear system is defined by the Gaussian

function
)
h(t) = -—
(1) = expl ~ 2

where 7 is an adjustable parameter that defines pulse duration. Determine the frequency response
of the system. <

» Drill Problem 2.14 A tapped-delay-line filter consists of N weights, where N is odd. It
is symmetric with respect to the center tap; that is, the weights satisfy the condition

W, = WN-1-n> 0=n=N-1

(a) Find the amplitude response of the filter.
(b) Show that this filter has a linear phase response. What is the implication of this property?
() What is the time delay produced by the filter? <
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2.7 Ideal Low-Pass Filters

As previously mentioned, a filter is a frequency-selective system that is used to limit the spec-
trum of a signal to some specified band of frequencies. Its frequency response is characterized
by a passband and a stopband. The frequencies inside the passband are transmitted with
little or no distortion, whereas those in the stopband are rejected. The filter may be of the
low-pass, high-pass, band-pass, or band-stop type, depending on whether it transmits low,
high, intermediate, or all but intermediate frequencies, respectively. We have already encoun-
tered examples of low-pass and band-pass systems in Fig. 2.22.

Filters, in one form or another, represent an important functional block in building
communication systems. In this book, we will be concerned with the use of high-pass, low-
pass, and band-pass filters.

In this section, we study the time response of the ideal low-pass filter, which trans-
mits, without any distortion, all frequencies inside the passband and completely rejects all
frequencies inside the stopband, as illustrated in Fig. 2.23. According to this figure, the
frequency response of an ideal low-pass filter satisfies two necessary conditions:

1. The amplitude response of the filter is a constant inside the passband —B = f = B.
(The constant in Fig. 2.23 is set equal to unity for convenience of presentation.)

2. The phase response varies linearly with frequency inside the passband of the filter.
(Outside the passband, the phase response may assume arbitrary values.)

In mathematical terms, the transfer function of an ideal low-pass filter is therefore defined by

exp(~j2nfo),  ~B=f=B
H(f) = 2.116
IH(I
1.0
(a) E— 0 5 f
arg[H(f)]
(b) f
-B 0 B FIGURE 2.23 Frequency response of

ideal low-pass filter. () Amplitude
response. (b) Phase response; outside
the band —B = f = B, the phase

Slope = 27 1, response assumes an arbitrary form
(not shown in the figure).
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FIGURE 2.24 Impulse response of ideal low-pass filter.

The parameter B defines the bandwidth of the filter. The ideal low-pass filter is, of course,
noncausal because it violates the Paley—Wiener criterion. This observation may also be
confirmed by examining the impulse response b (t). Thus, by evaluating the inverse Fourier
transform of the transfer function of Eq. (2.116), we get

B
h(t) :/—B explj2m@f(t — t9)] df (2.117)

where the limits of integration have been reduced to the frequency band inside which H(f)
does not vanish. Equation (2.117) is readily integrated, yielding

_sin[27B(t — 1) ]
m(t — )
— 2B sinc[2B(t — #,)] (2.118)

The impulse response has a peak amplitude of 2B centered on time %, as shown in Fig. 2.24
for ty = 1/B. The duration of the main lobe of the impulse response is 1/B, and the build-
up time from the zero at the beginning of the main lobe to the peak value is 1/2B. We see
from Fig. 2.24 that, for any finite value of #j, there is some response from the filter before
the time # = 0 at which the unit impulse is applied to the input; this observation confirms
that the ideal low-pass filter is noncausal. Note, however, that we can always make the delay
ty large enough for the condition

|sinc[2B(t — #p)]] << 1, fort <0

to be satisfied. By so doing, we are able to build a causal filter that approximates an ideal
low-pass filter, with the approximation improving with increasing delay #.

PULSE RESPONSE OF IDEAL Low-PASS FILTERS

Consider a rectangular pulse x(#) of unit amplitude and duration T, which is applied to an
ideal low-pass filter of bandwidth B. The problem is to determine the response y(¢) of
the filter.

The impulse response »(¢) of the filter is defined by Eq. (2.118). Clearly, the delay #,
has no effect on the shape of the filter response y(#). Without loss of generality, we may
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therefore simplify the exposition by setting #, = 0, in which case the impulse response of
Eq. (2.118) reduces to

h(t) = 2B sinc(2Bt) (2.119)

With the input x(¢) = 1 for —(T/2) =t = (T/2), the resulting response of the filter is
given by the convolution integral

T2
= ZB/ sinc[2B(t — 7)] dr

T2
_ zB/m(Sin[z”B(t - T”) dr (2.120)
—T/2 2.7TB(t - ’T) ’

Define a new dimensionless variable
A=27B(t —7)
Then, changing the integration variable from 7 to A, we may rewrite Eq. (2.120) as

2mB(t+T)2) / .

1

sty = L <sm /\) i
T J2mB(t—T)2) A

2wB(t+T/2) s . 2wB(t—T/2) .
AL e )
mLJo A 0 A

= %{Si[ZWB(t + T/2)] = Si[27B(¢ — T/2)]} (2.121)

In Eq. (2.121), we have introduced a new expression called the sine integral, which is

defined by

Si(u) =/ MY dx (2.122)
0

X
Unfortunately, the sine integral Si(#) cannot be evaluated in closed form in terms of ele-

mentary functions. However, it can be integrated in a power series, which, in turn, leads
to the graph plotted in Fig. 2.25. From this figure we make three observations:

1. The sine integral Si(#) is an oscillatory function of #, having odd symmetry about the
origin # = 0.

2. It has its maxima and minima at multiples of 7.

3. It approaches the limiting value (7/2) for large positive values of u.

In Fig. 2.25, we see that the sine integral Si(#) oscillates at a frequency of 1/27. Corre-
spondingly, the filter response y(#) will also oscillate at a frequency equal to the cutoff fre-
quency (i.e., bandwidth) B of the low-pass filter, as indicated in Fig. 2.26. The maximum
value of Si(u) occurs at u,,, = 7 and is equal to

1.8519 = (1.179) X (Z)

We may show that the filter response y(¢) has maxima and minima at

T 1
= *-*_—
2

2

tmax
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FIGURE 2.25 The sine integral Si(u).
with

Y(tmax) = _[Si(7) — Si(m — 27BT)]

Bl

= —[Si(7) + Si2@BT — )]

™

where, in the second line, we have used the odd symmetric property of the sine integral. Let

Si(27BT — ) = §(1 + A)

1V
1.0 9%

y(t)

NIES|

T
0 7
Time ¢

FIGURE 2.26 Ideal low-pass filter response for a square pulse.
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where A is the absolute value of the deviation in the value of Si(27BT — ) expressed as
a fraction of the final value +/2. Thus, recognizing that

Si(7) = (1.179)(m/2)

we may redefine y(#y,y) as

1
Y(tmax) = 5 (1179 + 1 = 4)

U

1
1.09 = EA (2.123)

For a time-bandwidth product BT >> 1, the fractional deviation A has a very small value,
in which case we may make two important observations from Eq. (2.123):

1. The percentage overshoot in the filter response is approximately 9 percent.
2. The overshoot is practically independent of the filter bandwidth B.

The basic phenomenon underlying these two observations is called the Gibbs phenomenon.
Figure 2.26 shows the oscillatory nature of the filter response and the 9 percent overshoot
characterizing the response, assuming that BT >> 1.

Figure 2.27, occupying pages 65 and 66, shows the filter response for four time-band-
width products: BT = 5, 10, 20, and 100, assuming that the pulse duration T'is 1 second.
Table 2.1 shows the corresponding frequencies of oscillations and percentage overshoots
for these time-bandwidth products, confirming observations 1 and 2.

TABLE 2.1 Oscillation Frequency and Percentage
Overshoot for Varying Time-Bandwidth Product

BT Oscillation Frequency Percentage Overshoot
S SHz 9.11
10 10 Hz 8.98
20 20 Hz 8.99
100 100 Hz 9.63

Figure 2.28, occupying pages 67 and 68, shows the filter response for periodic square-
wave inputs of different fundamental frequencies: f = 0.1, 0.25, 0.5, and 1 Hz, and with
the bandwidth of the low-pass filter being fixed at B = 1 Hz. From Fig. 2.28 we may make
the following observations:

For fy = 0.1 Hz, corresponding to a time-bandwidth product BT = 3, the filter some-
what distorts the input square pulse, but the shape of the input is still evident at the
filter output. Unlike the input, the filter output has nonzero rise and fall times that
are inversely proportional to the filter bandwidth. Also, the output exhibits oscilla-
tions (ringing) at both the leading and trailing edges.

As the fundamental frequency fj of the input square wave increases, the low-pass fil-
ter cuts off more of the higher frequency components of the input. Thus, when
fo = 0.25 Hz, corresponding to BT = 2, only the fundamental frequency and the
first harmonic component pass through the filter; the rise and fall times of the out-
put are now significant compared with the input pulse duration T. When fy = 0.5 Hz,
corresponding to BT = 1, only the fundamental frequency component of the input
square wave is preserved by the filter, resulting in an output that is essentially
sinusoidal.
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FIGURE 2.27 Pulse response of ideal low-pass filter for pulse duration T = 1s and varying
time-bandwidth (BT) product. (a) BT = 5. (b) BT = 10.
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FIGURE 2.28 Response of ideal low-pass filter to a square wave of varying frequency .
(a) fo = 0.1 Hz. (b) fy = 0.25 Hz.
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When the fundamental frequency of the input square wave is increased further to the
high value fy = 1Hz, which corresponds to a time-bandwidth product BT = 0.5, the
dc component becomes the dominant output, and the shape of the input square wave
is completely destroyed by the filter.

From these results, we draw an important conclusion: When using an ideal low-pass filter,
we must use a time-bandwidth product BT = 1 to ensure that the waveform of the filter
input is recognizable from the resulting output. A value of BT greater than unity tends to
reduce the rise time as well as decay time of the filter pulse response.

APPROXIMATION OF IDEAL Low-PASS FILTERS

A filter may be characterized by specifying its impulse response »(t) or, equivalently, its
transfer function H(f). However, the application of a filter usually involves the separation
of signals on the basis of their spectra (i.e., frequency contents). This, in turn, means that
the design of filters is usually carried out in the frequency domain. There are two basic
steps involved in the design of a filter:

1. The approximation of a prescribed frequency response (i.e., amplitude response,
phase response, or both) by a realizable transfer function.

2. The realization of the approximating transfer function by a physical device.

For an approximating transfer function H(f) to be physically realizable, it must represent
a stable system. Stability is defined here on the basis of the bounded input-bounded out-
put criterion described in Eq. (2.100) that involves the impulse response 4(t). To specify
the corresponding condition for stability in terms of the transfer function, the traditional
approach is to replace j27f with s and recast the transfer function in terms of s. The new
variable s is permitted to have a real part as well as an imaginary part. Accordingly, we refer
to s as the complex frequency. Let H' (s) denote the transfer function of the system, defined
in the manner described herein. Ordinarily, the approximating transfer function H'(s) is
a rational function, which may therefore be expressed in the factored form

H'(s) = H(f)ljamf=s
(s —z1)(s —22) (s — Zm)
(s =p1)(s = p2) (s = bn)
where K is a scaling factor; 21, 25, - - . , 2, are called the zeros of the transfer function, and
P1s> P2s-- - Dy are called its poles. For a low-pass transfer function, the number of zeros,
m, is less than the number of poles, n. If the system is causal, then the bounded

input-bounded output condition for stability of the system is satisfied by restricting all the
poles of the transfer function H'(s) to be inside the left half of the s-plane; that is to say,

Re([pi]) <O, for all i

Note that the condition for stability involves only the poles of the transfer function H'(s);
the zeros may indeed lie anywhere in the s-plane. Two types of systems may be distin-
guished, depending on locations of the m zeros in the s-plane:

Minimum-phase systems, characterized by a transfer function whose poles and zeros
are all restricted to lie inside the left hand of the s-plane.

Nonminimum-phase systems, whose transfer functions are permitted to have zeros on
the imaginary axis as well as the right half of the s-plane.
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Minimum-phase systems distinguish themselves by the property that the phase response of
this class of linear time-invariant systems is uniquely related to the gain response.

In the case of low-pass filters where the principal requirement is to approximate the
ideal amplitude response shown in Fig. 2.23, we may mention two popular families of fil-
ters: Butterworth filters and Chebyshev filters, both of which have all their zeros at s = .
In a Butterworth filter, the poles of the transfer function H'(s) lie on a circle with origin
as the center and 277 B as the radius, where B is the 3-dB bandwidth of the filter. In a Cheby-
shev filter, on the other hand, the poles lie on an ellipse. In both cases, of course, the poles
are confined to the left half of the s-plane.

Turning next to the issue of physical realization of the filter, we see that there are
two basic options to do this realization, one analog and the other digital:

Analog filters, built using (a) inductors and capacitors, or (b) capacitors, resistors, and
operational amplifiers. The advantage of analog filters is the simplicity of
implementation.

Digital filters, for which the signals are sampled in time and their amplitude is also
quantized. These filters are built using digital hardware; hence the name. An impor-
tant feature of a digital filter is that it is programmable, thereby offering a high degree
of flexibility in design. In effect, complexity is traded off for flexibility.

2.8 Correlation and Spectral Density:

Energy Signals

In this section, we continue the characterization of signals and systems by considering the
class of energy signals and therefore focusing on the notion of energy. (The characteriza-
tion of signals and systems is completed in Section 2.9, where we consider the other class
of signals, power signals.) In particular, we introduce a new parameter called spectral den-
sity, which is defined as the squared amplitude spectrum of the signal of interest. It turns
out that the spectral density is the Fourier transform of the correlation function, which
was first introduced under Property 13 in Section 2.2.

AUTOCORRELATION FUNCTION

Consider an energy signal x(¢) that, for the purpose of generality, is assumed to be com-
plex valued. Following the material presented under the correlation theorem (Property 13)
in Section 2.2, we formally define the autocorrelation function of the energy signal x(t) for
alagas

o0
R (7) = / x(t)x*(¢ — 1) dr (2.124)
—00
According to this formula, the autocorrelation function R,(7) provides a measure of the
similarity between the signal x(¢) and its delayed version x(¢ — 7). As such, it can be mea-
sured using the arrangement shown in Fig. 2.29. The time lag 7 plays the role of a scan-
ning or searching variable. Note that R.(7) is complex valued if x(¢) is complex valued.
From Eq. (2.124) we readily see that the value of the autocorrelation function R,(7)
for 7 = 0 is equal to the energy of the signal x(2); that is,

R = [ kP

o0
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FIGURE 2.29 Scheme for measuring the autocorrelation function
R,(7) of an energy signal x(¢) for lag 7.

ENERGY SPECTRAL DENSITY

The Rayleigh energy theorem, discussed under Property 14 in Section 2.2, is important
because it not only provides a useful method for evaluating the energy of a pulse signal, but
also it highlights the squared amplitude spectrum as the distribution of the energy of the
signal measured in the frequency domain. It is in light of this theorem that we formally define
the energy spectral density or energy density spectrum of an energy signal x(z) as

Ue(f) = [X(F)I? (2.125)

where |X(f)] is the amplitude spectrum of x(t). Clearly, the energy spectral density ¢..(f)
is a nonnegative real-valued quantity for all £, even though the signal x(#) may itself be com-
plex valued.

WIENER—KHITCHINE RELATIONS FOR ENERGY SIGNALS

Referring to the correlation theorem described in Eq. (2.53), let g1(¢) = g(t) = x(¢), where
x(t) is an energy signal and therefore Fourier transformable. Under this condition, the
resulting left-hand side of Eq. (2.53) defines the autocorrelation function R,(7) of the sig-
nal x(¢). Correspondingly, in the frequency domain, we have G{(f) = G,(f) = X(f), in
which case the right-hand side of Eq. (2.53) defines the energy spectral density ¢.(f). On
this basis, we may therefore state that given an energy signal x(t), the autocorrelation func-
tion R (1) and energy spectral density r.(f) form a Fourier-transform pair. Specifically, we
have the pair of relations:

sz(f):/ R.(7) exp(—j2wfr) dr (2.126)
and
Rir) = [ () explizmfe) df 2.127)

Note, however, that the Fourier transformation in Eq. (2.126) is performed with respect to

the adjustable lag 7. The pair of equations (2.126) and (2.127) constitutes the Wiener-Kbhit-

chine relations for energy signals.
From Egs. (2.126) and (2.127

)
1. By setting f = 0 in Eq. (2.126), we have

/ " Ryl(r) dr = ,(0)

o0

we readily deduce the following two properties:
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which states that the total area under the curve of the complex-valued autocorrela-
tion function of a complex-valued energy signal is equal to the real-valued energy
spectral ¥,.(0) at zero frequency.

2. By setting 7 = 0 in Eq. (2.127), we have
[ty df = R
—0o0

which states that the total area under the curve of the real-valued energy spectral
density of an energy signal is equal to the total energy of the signal. This second result
is merely another way of starting the Rayleigh energy theorem.

EXAMPLE 2.13 Autocorrelation Function of Sinc Pulse
From Example 2.4, the Fourier transform of the sinc pulse
x(t) = A sinc(2Wr)
is given by
A f
X(f) = ZWreCt(ZW)

Since the rectangular function rect (f/2W) is unaffected by squaring, the energy spectral den-

sity of x(#) is therefore
(AY ol L
U(f) = (ﬁ) feCt(ﬁ)

Taking the inverse Fourier transform of i,.(f), we find that the autocorrelation function of the
sinc pulse A sinc(2Wt) is given by
2

RaAe) = zi\x/ sinc(2Wr) (2.128)

which has a similar waveform, plotted as a function of the lag 7, as the sinc pulse itself.

This example teaches us that sometimes it is easier to use an indirect procedure based
on the energy spectral density to determine the autocorrelation function of an energy sig-
nal rather than using the formula for the autocorrelation function.

EFFECT OF FILTERING ON ENERGY SPECTRAL DENSITY

Suppose now the energy signal x(#) is passed through a linear time-invariant system of
transfer function H(f), yielding the output signal y(t) as illustrated in Fig. 2.20(a). Then,
according to Eq. (2.109), the Fourier transform of the output y(#) is related to the Fourier
transform of the input x(z) as follows:

Y(f) = H()X(f)

Taking the squared amplitude of both sides of this equation, we readily get

Uy(f) = [HA)IPw(f) (2.129)

where, by definition, .(f) = |X(f)|* and Py (f) = |Y(f)|?. Equation (2.129) states that
when an energy signal is transmitted through a linear time-invariant filter, the energy spec-
tral density of the resulting output equals the energy spectral density of the input multiplied
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by the squared amplitude response of the filter. The simplicity of this statement emphasizes
the importance of spectral density as a parameter for characterizing the distribution of the
energy of a Fourier transformable signal in the frequency domain.

Moreover, on the basis of the Wiener—Khintchine equations (2.126) and (2.127) and

the relationship of Eq. (2.129), we may describe an indirect method for evaluating the
effect of linear time-invariant filtering on the autocorrelation function of an energy signal:

1.

2.
3.

Determine the Fourier transforms of x(¢) and h(t), obtaining X(f) and H(f),
respectively.

Use Eq. (2.129) to determine the energy spectral density ,,(f) of the output y(t).

Determine R,(7) by applying the inverse Fourier transform to ¢, (f) obtained under
point 2.

EXAMPLE 2.14 Energy of Low-pass Filtered Version of Rectangular Pulse

A rectangular pulse of unit amplitude and unit duration is passed through an ideal low-pass
filter of bandwidth B, as illustrated in Fig. 2.30(a). Part (b) of the figure depicts the waveform
of the rectangular pulse. The amplitude response of the filter is defined by (see Fig. 2.30(c))

otherwise

ol ={y  oma =

The rectangular pulse constituting the filter input has unit energy. We wish to evaluate the
effect of varying the bandwidth B on the energy of the filter output.

We start with the Fourier transform pair:

rect(t) =—— sinc(f)

which represents the normalized version of the Fourier-transform pair given in Eq. (2.10).
Hence, with the filter input defined by

x(t) = rect(t)

Input Output
x(f) Ideal ()
—_— low-pass —_—
filter
(a)
x(t)
1.0
t
1o 1
2 2
(b)
[H()l
1.0
S I FIGURE 2.30 (a) Ideal low-pass
-B 0 B

filtering. (b) Filter input. (c)
(© Amplitude response of the filter.
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FIGURE 2.31 Energy spectral density of the filter input x(2); only the
values for positive frequencies are shown in the figure.

its Fourier transform equals
X(f) = sinc(f)
The energy spectral density of the filter input therefore equals

w(f) = IX(HP
= sinc?(f) (2.130)

This normalized energy spectral density is plotted in Fig. 2.31.
To evaluate the energy spectral density ¢,(f) of the filter output y(#), we use Eq. (2.129),

obtaining
Uy(f) = [H()Pyx(f)
_ lpx(f)’ _BSfSB
- {0, otherwise (2.131)

The energy of the filter output is therefore

E - / (D dr
B
- / wa(F) df
-B
B
—2 /O walF) df
B

= sinc? .
2 [ sine(r) af (2.132)

Since the filter input has unit energy, we may also view the result given in Eq. (2.132) as the
ratio of the energy of the filter output to that of the filter input for the general case of a rec-
tangular pulse of arbitrary amplitude and arbitrary duration, processed by an ideal low-pass
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FIGURE 2.32 Output energy-to-input energy ratio versus normalized
bandwidth.

filter of bandwidth B. Accordingly, we may in general write

Energy of filter output
p=

Energy of filter input
B
= 2/ sinc?(f) df (2.133)
0

According to Fig. 2.30(b), the rectangular pulse applied to the filter input has unit duration;
hence, the variable f in Eq. (2.133) represents a normalized frequency. Equation (2.133) is
plotted in Fig. 2.32. This figure shows that just over 90 percent of the total energy of a rec-
tangular pulse lies inside the main spectral lobe of this pulse.

INTERPRETATION OF THE ENERGY SPECTRAL DENSITY

Equation (2.129) is important because it not only relates the output energy spectral den-
sity of a linear time-invariant system to the input energy spectral density, but it also pro-
vides a basis for the physical interpretation of the concept of energy spectral density itself.
To be specific, consider the arrangement shown in Fig. 2.33(a), where an energy signal
x(t) is passed through a narrow-band filter followed by an energy meter. Figure 2.33(b)
shows the idealized amplitude response of the filter. That is, the filter is a band-pass filter
whose amplitude response is defined by

Af Af
— 13 fc -5 = ’f‘ = fc + =
[H(f)] 2 2 (2.134)

0, otherwise

We assume that the filter bandwidth Af is small enough for the amplitude response of the
input signal x(2) to be essentially flat over the frequency interval covered by the passband
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Filter Output
Input OUtI;ut enzrgy
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(©

FIGURE 2.33 () Block diagram of system for measuring
energy spectral density. (b) Idealized amplitude response of
the filter. (c) Energy spectral density of the filter output.

of the filter. Accordingly, we may express the amplitude spectrum of the filter output by the
approximate formula

[Y(HI = [HOIIX(F)]
Af

A
Xl f-SL=ip+

2.135
0, otherwise ( )

Correspondingly, the energy spectral density i,(f) of the filter output y(z) is approximately
related to the energy spectral density #.(f) of the filter input x(z) as follows:
Af

A
i), f- S =p=pe

y(f) = 2 (2.136)

0, otherwise

This relation is illustrated in Fig. 2.33(c), which shows that only the frequency compo-
nents of the signal x(#) that lie inside the narrow passband of the ideal band-pass filter



2.8 Correlation and Spectral Density: Energy Signals 77

reach the output. From Rayleigh’s energy theorem, the energy of the filter output y(#) is
given by

> A () df

In light of Eq. (2.136), we may approximate E, as
E, = 24,(f) Af (2.137)

The multiplying factor 2 accounts for the contributions of negative as well as positive fre-
quency components. We may rewrite Eq. (2.137) in the form

Ey
0nlf) = 557 (2.138)
Equation (2.138) states that the energy spectral density of the filter input at some frequency
f. equals the energy of the filter output divided by 2Af, where Af is the filter bandwidth
centered on f.. We may therefore interpret the energy spectral density of an energy signal
for any frequency f as the energy per unit bandwidth, which is contributed by frequency
components of the signal around the frequency f.

The arrangement shown in the block diagram of Fig. 2.33(a) thus provides the basis
for measuring the energy spectral density of an energy signal. Specifically, by using a vari-
able band-pass filter to scan the frequency band of interest and determining the energy of
the filter output for each midband frequency setting of the filter, a plot of the energy spec-
tral density versus frequency is obtained. Note, however, for the formula of Eq. (2.138) to
hold and therefore for the arrangement of Fig. 2.33(a) to work, the bandwidth Af must
remain fixed for varying f,.

CROSS-CORRELATION OF ENERGY SIGNALS

The autocorrelation function provides a measure of the similarity between a signal and its
own time-delayed version. In a similar way, we may use the cross-correlation function as
a measure of the similarity between one signal and the time-delayed version of a second sig-
nal. Let x(¢) and y(#) denote a pair of complex-valued energy signals. The cross-correlation
function of this pair of signals is defined by

Ryy(7) =/ x(t)y*(t — 7) dt (2.139)

We see that if the two signals x(#) and y(#) are somewhat similar, then the cross-correla-
tion function R, (7) will be finite over some range of 7, thereby providing a quantitative
measure of the similarity, or coherence, between them. The energy signals x(¢) and y(¢) are
said to be orthogonal over the entire time interval if R, (0) is zero — that is, if

/ x(t)y*(t) dt = 0 (2.140)

Equation (2.139) defines one possible value for the cross-correlation function for a speci-
fied value of the delay variable 7. We may define a second cross-correlation function for
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the energy signals x(¢) and y(¢) as

Ry(7) =/_ y(£)x* (¢t — 7) dt (2.141)

o0

From the definitions of the cross-correlation functions R, (7) and Ry, (7) just given, we
obtain the fundamental relationship

Ryy(1) = Ryp(—7) (2.142)

Equation (2.142) indicates that unlike convolution, correlation is not in general commu-
tative; that is, Ry (7) # Ry.(7).

To characterize the cross-correlation behavior of energy signals in the frequency
domain, we introduce the notion of cross-spectral density. Specifically, given a pair of com-
plex-valued energy signals x(#) and y(#), we define their cross-spectral densities, denoted
by ¢, (f) and i,(f), as the respective Fourier transforms of the cross-correlation functions
Ryy(7) and Ry, (7), as shown by

bolf) = Re(r) expl—j2fr) dr (2.143)

and
bue§) = | Ronlr) expl=iafr) dn (2.144)
In accordance with the correlation theorem (i.e., Property 13 of Section 2.2), we thus have
Yy (f) = X(H)Y*(f) (2.145)

and
Py(f) = Y(£)X*(f) (2.146)

From this pair of relations, we readily see two properties of the cross-spectral density.

1. Unlike the energy spectral density, cross-spectral density is complex valued in general.
2. y(f) = w;x(f) from which it follows that, in general, ¢, (f) # Py(f).

» Drill Problem 2.15 Derive the relationship of Eq. (2.142) between the two cross-
correlation functions R,,(¢) and R,(t). <

» Drill Problem 2.16 Consider the decaying exponential pulse

exp(—at), t>0

g(t) =<1, t=0
0, t<0
Determine the energy spectral density of the pulse g(#). >

» Drill Problem 2.17 Repeat Problem 2.16 for the double exponential pulse
exp(—at), t>0
g(t) =<1, t=0 <
exp(at), <0
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2.9 Power Spectral Density

In this section, we expand the important notion of spectral density to include the class of
power signals. The average power of a signal x(¢) is defined by

T
T 2
P= Thg 2T/Tyx(t)| dt (2.147)

The signal x(t) is said to be a power signal if the condition
P <>

holds. Examples of power signals include periodic signals and noise. We consider periodic
signals in this section. (Noise is considered in Chapter 8.)

To develop a frequency-domain distribution of power, we need to know the Fourier
transform of the signal x(¢). However, this may pose a problem, because power signals
have infinite energy and may therefore not be Fourier transformable. To overcome the
problem, we consider a truncated version of the signal x(¢). In particular, we define

xr(t) = x(2) rect<2’fr)

_ {x(t), -T=t=T

2.148
0, otherwise ( )

As long as the duration T is finite, the truncated signal x(¢) has finite energy; hence x1(%)
is Fourier transformable. Let X7(f) denote the Fourier transform of x1(¢); that is,

x7(t) == Xr(f)

Using the truncated signal x7(#), we may rewrite Eq. (2.147) for the average power P in
terms of x7(z) as

N
P= Thi‘lczT/ er(2)[* dt (2.149)

—00
Since x () has finite energy, we may use the Rayleigh energy theorem to express the energy
of x7(¢) in terms of its Fourier transform X7(f) as

/ ber(t)? dt = / () df

o0

where |X7(f)| is the amplitude spectrum of x1(t). Accordingly, we may rewrite Eq. (2.149)
in the equivalent form

. 1 ©
P - fim 5= [ bl ar (2.150)

As the duration T increases, the energy of x1(#) increases. Correspondingly, the energy
spectral density |XT(][)|2 increases with T. Indeed as T approaches infinity, so will
|X7(f)|". However, for the average power P to be finite, | Xr(f )|2 must approach infinity
at the same rate as T. This requirement ensures the convergence of the integral on the right-
hand side of Eq. (2.150) in the limit as T approaches infinity. The convergence, in turn, per-
mits us to interchange the order in which the limiting operation and integration in
Eq. (2.150) are performed. We may then rewrite this equation as

© 1
P = / (Tli;nmle(f)lz) df (2.151)

oo
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Let the integrand in Eq. (2.151) be denoted by
) 1
Se(f) = lim ——[Xr(f)[* (2.152)

The frequency-dependent function S,(f) is called the power spectral density or power spec-
trum of the power signal x(t), and the quantity (| X7(f )\2/ 2T) is called the periodogram of
the signal.

From Eq. (2.152), we readily see that the power spectral density is a nonnegative
real-valued quantity for all frequencies. Moreover, from Eq. (2.152) we readily see that

P= /_Oosx(f) df (2.153)

o0

Equation (2.153) states: the total area under the curve of the power spectral density of a
power signal is equal to the average power of that signal. The power spectral density of a
power signal therefore plays a role similar to the energy spectral density of an energy signal.

» Drill Problem 2.18 In an implicit sense, Eq. (2.153) embodies Parseval’s power theo-
rem, which states that for a periodic signal x(t) we have

)2 .
i/, EOFd= 3 XoHP

= —

where T is the period of the signal, f; is the fundamental frequency, and X (#f) is the Fourier
transform of x(#) evaluated at the frequency #f. Prove this theorem. <

EXAMPLE 2.15 Modulated Wave
Consider the modulated wave
x(t) = g(¢) cos(27f.t) (2.154)

where g(¢) is a power signal that is band-limited to B hertz. We refer to x(#) as a “modulated
wave” in the sense that the amplitude of the sinusoidal “carrier” of frequency f, is varied lin-
early with the signal g(#). (The subject of modulation is covered in detail in Chapter 3.) We
wish to find the power spectral density of x() in terms of that of g(), given that the frequency
f- is larger than the bandwidth B.

Let g7(#) denote the truncated version of g(#), defined in a manner similar to that
described in Eq. (2.148). Correspondingly, we may express the truncated version of x(z) as

x7(t) = gr(t) cos(2wf.t) (2.1595)

Since
1
cos(2mft) = z[exp(/‘ZTrfCt) + exp(—j27f.t)], (2.156)
it follows from the frequency-shifting property (i. e., Property 6) of the Fourier transform that

Xe(f) = 51Grlf = £) + Grlf + £)] 2.157)

where G7(f) is the Fourier transform of gr(z).
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Given that f. > B, we find that Gp(f — f.) and G(f + f.) represent nonoverlapping
spectra; their product is therefore zero. Accordingly, using Eq. (2.157) to evaluate the squared
amplitude of X7(f), we get

Xe(F) = GU1GH(f = P + 1Gr(f + P 2.158)

Finally, applying the definition of Eq. (2.152) for the power spectral density of the power sig-
nal g(¢) to Eq (2.158), we get the desired result:

S(1) = 1S = £) + Sy(F + )] (2159

Except for the scaling factor 1/4, the power spectral density of the modulated wave x(t) is equal
to the sum of the power spectral density Sy(f) shifted to the right by f. and the Sy(f) shifted to
the left by the same amount f..

2.10 Numerical Computation
of the Fourier Transform

The material presented in this chapter clearly testifies to the importance of the Fourier
transform as a theoretical tool for the representation of deterministic signals and linear
time-invariant systems. The importance of the Fourier transform is further enhanced by the
fact that there exists a class of algorithms called fast Fourier transform algorithms for the
numerical computation of the Fourier transform in a highly efficient manner.

The fast Fourier transform algorithm is itself derived from the discrete Fourier trans-
form in which, as the name implies, both time and frequency are represented in discrete
form. The discrete Fourier transform provides an approximation to the Fourier transform.
In order to properly represent the information content of the original signal, we have to take
special care in performing the sampling operations involved in defining the discrete Fourier
transform. A detailed treatment of the sampling process will be presented in Chapter 5. For
the present, it suffices to say that given a band-limited signal, the sampling rate should be
greater than twice the highest frequency component of the input signal. Moreover, if the
samples are uniformly spaced by T; seconds, the spectrum of the signal becomes periodic,
repeating every f; = (1/T;) Hz. Let N denote the number of frequency samples contained
in an interval f;. Hence, the frequency resolution involved in the numerical computation
of the Fourier transform is defined by

fs 1 1
Af N NL T (2.160)
where T = NT, is the total duration of the signal.

Consider then a finite data sequence {gy, g1, - ., gn—1}- For brevity, we refer to this
sequence as g,, in which the subscript is the time index n = 0,1,..., N — 1. Such a
sequence may represent the result of sampling an analog signal g(z) at times
t=0,T,..., (N — 1)T;, where T, is the sampling interval. The ordering of the data
sequence defines the sample time in that gy, g1, ..., gn—1 denote samples of g(#) taken at
times 0, T, ..., (N — 1)T;, respectively. Thus we have

& = &(nTy) (2.161)
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We formally define the discrete Fourier transform (DFT) of the sequence g, as
N-1 i2ar
Gr= > & exp(—lNkn), k=0,1,...,N— 1 (2.162)
n=0

The sequence {Gy, Gy,..., Gn—1} is called the transform sequence. For brevity, we refer
to this new sequence as Gp, in which the subscript is the frequency index
k=0,1,..., N — 1. Correspondingly, we define the inverse discrete Fourier transform
(IDFT) of Gy, as

1N*1 <]27T >
gn—NkZOerxp Nkn R n=0,1,...,N—1 (2.163)

The DFT and the IDFT form a transform pair. Specifically, given the data sequence g,,, we
may use the DFT to compute the transform sequence Gy ; and given the transform sequence
G}, we may use the IDFT to recover the original data sequence g,. A distinctive feature of
the DFT is that for the finite summations defined in Eqs. (2.162) and (2.163), there is no
question of convergence.

When discussing the DFT (and algorithms for its computation), the words “sample”
and “point” are used interchangeably to refer to a sequence value. Also, it is common prac-
tice to refer to a sequence of length N as an N-point sequence, and refer to the DFT of a
data sequence of length N as an N-point DFT.

INTERPRETATIONS OF THE DFT AND THE IDFT

We may visualize the DFT process, described in Eq. (2.162), as a collection of N complex
heterodyning and averaging operations, as shown in Fig. 2.34(a); in the picture depicted
herein, heterodyning refers to the multiplication of data sequence g, by a complex expo-
nential. We say that the heterodyning is complex in that samples of the data sequence are
multiplied by complex exponential sequences. There are a total of N complex exponential
sequences to be considered, corresponding to the frequency index k = 0, 1,..., N — 1.
Their periods have been selected in such a way that each complex exponential sequence has
precisely an integer number of cycles in the total interval 0 to N — 1. The zero-frequency
response, corresponding to k& = 0, is the only exception.

For the interpretation of the IDFT process, described in Eq. (2.163), we may use the
scheme shown in Fig. 2.34(b). Here we have a collection of N complex signal generators,
each of which produces the complex exponential sequence

2
exp(@\?kn) = Cos(ZIZITkn) + jsin(?kn)

2 . (2w B _
{cos<Nkn), sm(Nkn)}, k=0,1,...,.N—1 (2.164)

Thus, in reality, each complex signal generator consists of a pair of generators that output
a cosinusoidal and a sinusoidal sequence of k cycles per observation interval. The output
of each complex signal generator is weighted by the complex Fourier coefficient G. At each
time index 7, an output is formed by summing the weighted complex generator outputs.

It is noteworthy that although the DFT and the IDFT are similar in their mathemat-
ical formulations, as described in Egs. (2.162) and (2.163), their interpretations, as depicted
in Figs. 2.34(a) and 2.34(b), are so completely different.

Also, the addition of harmonically related periodic signals, as in Figs. 2.34(a) and
2.34(b), suggests that the sequences G, and g, must be both periodic. Moreover, the proces-
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sors shown in Figs. 2.34(a) and 2.34(b) must be linear, suggesting that the DFT and IDFT
are both linear operations. This important property is also obvious from the defining equa-

tions (2.162) and (2.163).

FAST FOURIER TRANSFORM ALGORITHMS

In the discrete Fourier transform (DFT), both the input and the output consist of sequences
of numbers defined at uniformly spaced points in time and frequency, respectively. This fea-
ture makes the DFT ideally suited for direct numerical evaluation on a digital computer.
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Moreover, the computation can be implemented most efficiently using a class of algorithms
called fast Fourier transform (FFT) algorithms.> An algorithm refers to a “recipe” that can
be written in the form of a computer program.

FFT algorithms are computationally efficient because they use a greatly reduced num-
ber of arithmetic operations as compared to the brute force computation of the DFT. Basi-
cally, an FFT algorithm attains its computational efficiency by following a
divide-and-conquer strategy, whereby the original DFT computation is decomposed suc-
cessively into smaller DFT computations. In this section, we describe one version of a pop-
ular FFT algorithm, the development of which is based on such a strategy.

To proceed with the development, we first rewrite Eq. (2.162), defining the DFT of
g,, in the simplified form

N-1
Gr= > gW* k=0,1,...,N—-1 (2.165)
n=0
where the new coefficient W is defined by
W = ( /277> 2.166
= exp| — (2.166)

From this definition, we see that
WN = exp(—j2m) = 1
WN2 = exp(—jm) = —1
Wk IN)(ntmN) — ykn  for g ] =0, £1, =2, ...
That is, W*” is periodic with period N. The periodicity of W*" is a key feature in the devel-
opment of FFT algorithms.

Let N, the number of points in the data sequence, be an integer power of two, as
shown by

N =2
where L is an integer. Since N is an even integer, N/2 is an integer, and so we may divide

the data sequence into the first half and the last half of the points. Thus, we may rewrite
Eq. (2.165) in the equivalent form

(N/2)—1 N-1
G, = 2 gn‘Wnk + 2 gnw/nk
n=0 n=N/2
(N/2) -1 (N/2)-1
= > W+ > gn+N/2Wk(n+N/2)
n=0 n=0
(N/2)-1

= (& + GuenpWNHWE R =0,1,...,N -1 (2.167)
0

n=

Note that in the second line of Eq. (2.167), we changed the index of the second summa-
tion term so that both summation terms cover the same range. Since WN2 = —1, we have

WleN/Z — (_1)k

The fast Fourier transform (FFT) algorithm has a long history. Its modern discovery (or rediscovery to be more
precise) is attributed to Cooley and Tukey in 1965; see the paper by Cooley (1992) for details.
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For the evaluation of Eq. (2.167), we proceed by considering two cases, one correspond-
ing to even values of k and the other corresponding to odd values of k. For the case of
even k, let k = 2I, where [ = 0, 1,..., (N/2). Hence, we define

Xp =8 T En+N/2 (2.168)
Then, for even k we may put Eq. (2.167) into the new form
(N/2)—1 N
Gy= > x(WH" 1=0,1,..., S -1 (2.169)
n=0

From the definition of W given in Eq. (2.166), we readily see that

jAr
W2 = -
exp( N )

“oo( )

Hence, we recognize the sum on the right-hand side of Eq. (2.169) as the (N/2)-point DFT
of the sequence x,,.
Consider next the remaining case of odd k, and let

N

=2[+1 I=0,1,...,——1
k 21 b b b b 2
Then, recognizing that for odd k, W*N/2 = —1, we may define
Yn = 8 — &n+NJj2 (2.170)
Hence, for the case of odd k, we may put Eq. (2.167) into the corresponding form
(N2)-1
Gui1= > YW
n=0
(N/2)-1 N
= > [pWwWA", 1=, L5 -1 (2.171)
n=0

We recognize the sum on the right-hand side of Eq. (2.171) as the (N/2)-point DFT of the
modified sequence y, W”. The coefficient W multiplying v, is called a twiddle factor.

Equations (2.169) and (2.171) show that the even- and odd-valued samples of the
transform sequence G, can be obtained from the (N/2)-point DFTs of the sequences x,, and
v, W", respectively. The sequences x,, and v, are themselves related to the original data
sequence g, by Egs. (2.168) and (2.170), respectively. Thus, the problem of computing an
N-point DFT is reduced to that of computing two (N/2)-point DFTs. This procedure is
repeated a second time, whereby an (N/2)-point is decomposed into two (N/4)-point DFTs.
The decomposition (or, more precisely, the divide-and-conquer procedure) is continued
in this fashion until (after L = log, N stages), we reach the trivial case of N single-
point DFTs.

Figure 2.35 illustrates the computations involved in applying the formulas of
Egs. (2.169) and (2.171) to an 8-point data sequence; that is, N = 8. In constructing the
left-hand portions of the figure, we have used signal-flow graph notation. A signal-flow
graph consists of an interconnection of nodes and branches. The direction of signal trans-
mission along a branch is indicated by an arrow. A branch multiplies the variable at a node
(to which it is connected) by the branch transmittance. A node sums the outputs of all
incoming branches. The convention used for branch transmittances in Fig. 2.35 is as follows.
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When no coefficient is indicated on a branch, the transmittance of that branch is assumed
to be unity. For other branches, the transmittance of a branch is indicated by —1 or an inte-
ger power of W, placed alongside the arrow on the branch.

Thus, in Fig. 2.35(a), the computation of an 8-point DFT is reduced to that of two
4-point DFTs. The procedure for the 8-point DFT is mimicked to simplify the computation
of the 4-point DFT. This is illustrated in Fig. 2.35(b), where the computation of a 4-point
DFT is reduced to that of two 2-point DFTs. Finally, the computation of a 2-point DFT is
shown in Fig. 2.35(c).

Combining the ideas described in Fig. 2.35, we obtain the complete signal-flow graph
of Fig. 2.36 for the computation of the 8-point DFT. A repetitive structure, called a but-
terfly, can be discerned in the FFT algorithm of Fig. 2.36; a butterfly has two inputs and
two outputs. Examples of butterflies (for the three stages of the algorithm) are illustrated
by the bold-faced lines in Fig. 2.36.

For the general case of N = 2L, the algorithm requires L = log, N stages of compu-
tation. Each stage requires (N/2) butterflies. Each butterfly involves one complex multipli-
cation and two complex additions (to be precise, one addition and one subtraction).
Accordingly, the FFT structure described here requires (N/2) log, N complex multiplications

Data sequence Transform sequence
80 o Gy
o Gy

o G,
o Gg
o G,
o Gj
86 o Gj
wo w4
W3 w2
87 o G
w7 weo -1
Stage I Stage 11 Stage IIT

FIGURE 2.36 Decimation-in-frequency FFT algorithm.
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and N log, N complex additions. (Actually, the number of multiplications quoted is
pessimistic , because we may omit all twiddle factors W° = 1 and WN/2 = —1, WN/4 = —j,

W3N/4 = ;) This computational complexity is significantly smaller than that of the N? com-
plex multiplications and N(N — 1) complex additions required for the direct computation
of the DFT. The computational savings made possible by the FFT algorithm become more
substantial as we increase the data length N.

We may establish two other important features of the FFT algorithm by carefully
examining the signal-flow graph shown in Fig. 2.36:

1. At each stage of the computation, the new set of N complex numbers resulting from
the computation can be stored in the same memory locations used to store the pre-
vious set. This kind of computation is referred to as in-place computation.

2. The samples of the transform sequence G, are stored in a bit-reversed order. To illus-
trate the meaning of this latter terminology, consider Table 2.2 constructed for the case
of N = 8. At the left of the table, we show the eight possible values of the frequency
index k (in their natural order) and their 3-bit binary representations. At the right of
the table, we show the corresponding bit-reversed binary representations and indices.
We observe that the bit-reversed indices in the right-most column of Table 2.2 appear
in the same order as the indices at the output of the FFT algorithm in Fig. 2.36.

TABLE 2.2 Illustrating Bit Reversal

Frequency Binary Bit-Reversed Bit-Reversed
Index, k Representation Binary Representation Index
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
S 101 101 N
6 110 011 3
7 111 111 7

The FFT algorithm depicted in Fig. 2.36 is referred to as a decimation-in-frequency algorithm,
because the transform (frequency) sequence Gy, is divided successively into smaller subse-
quences. In another popular FFT algorithm, called a decimation-in-time algorithm, the data
(time) sequence g, is divided successively into smaller subsequences. Both algorithms have
the same computational complexity. They differ from each other in two respects. First, for
decimation-in-frequency, the input is in natural order, whereas the output is in bit-reversed
order. The reverse is true for decimation-in-time. Second, the butterfly for decimation-in-time
is slightly different from that for decimation-in-frequency. The reader is invited to derive
the details of the decimation-in-time algorithm using the divide-and-conquer strategy that
led to the development of the algorithm described in Fig. 2.36; See Problem 2.50.

COMPUTATION OF THE IDFT

The IDFT of the transform sequence Gy, is defined by Eq. (2.163). We may rewrite this
equation in terms of the complex parameter W as
1 N-1

S Gw L w=0,1,...,N-1 (2.172)
=0

gnzﬁk
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G, Cor_nplex Gi FFT N, Corpplex Ng, Divide 8n
conjugate conjugate by N

FIGURE 2.37 Use of the FFT algorithm for computing the IDFT.

Taking the complex conjugate of Eq. (2.172), multiplying by N, and recognizing from the
definition of Eq. (2.166) that W* = W1, we get

N-1
Ngy= > Gywk  0,1,...,N-1 (2.173)
k=0

The right-hand side of Eq. (2.173) is recognized as the N-point DFT of the complex-con-
jugated sequence Gj. Accordingly, Eq. (2.173) suggests that we may compute the desired
sequence g, using the scheme shown in Fig. 2.37, based on an N-point FFT algorithm.
Thus, the same FFT algorithm can be used essentially to handle the computation of both
the IDFT and the DFT.

2.11 Theme Example: Twisted Pairs
Jor Telephony

The fundamental transmission medium for connecting homes to telephone central switch-
ing offices is the twisted pair. A twisted pair is usually a pair of solid copper wires with poly-
ethylene sheathing. If the copper strand has a diameter of 0.4 mm, this cable size is referred
to as #26 on the American Wire Gauge, or simply 26 AWG. A twisted pair is an example
of a transmission line.

A transmission line consists of two conductors, each of which has its own inherent
resistance and inductance. Since the two conductors are often in close proximity, there is
also a capacitive effect between the two as well as potential conductance through the mate-
rial that is used to insulate the two wires. A transmission line so constructed is often rep-
resented by the lumped circuit shown in Fig. 2.38. Although the impedances are shown as
discrete elements in Fig. 2.38, it is more correct to consider them distributed through the
length of the transmission line.

Depending upon the circuit element values in Fig. 2.38, it is clear that a transmission
line will have a distorting effect on the transmitted signal. Furthermore, since the total
impedance increases with the length of the line, so will the frequency response of the trans-
mission line.

In Fig. 2.39, we show the typical response of a twisted pair with lengths of 2 to 8 kilo-
meters. There are several observations to be made from the figure:

Twisted pairs run directly from the central office to the home with one pair dedi-
cated to each telephone line. Consequently, the transmission lines can be quite long.

The results in Fig. 2.39 assume a continuous cable. In practice, there may be several
splices in the cable, different gauge cables along different parts of the path, and so on.
These discontinuities in the transmission medium will further affect the frequency
response of the cable.

R L
o AN l Y * o
Input C G Output
T FIGURE 2.38 Lumped
o VWA AAAAS o circuit model of a

R L transmission line.
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Amplitude Response (dB)

10 100 1000 10000
Frequency (Hz)

FIGURE 2.39 Typical frequency response of a 26-AWG twisted-pair transmission
line of different lengths with (600 Q + 2 wF) source and load impedances.

We see that, for a 2-km cable, the frequency response is quite flat over the voice band
from 300 to 3100 Hz for telephonic communication. However, for the 8-km cable,
the frequency response starts to fall just above 1 kHz.

The frequency response falls off at zero frequency because there is a capacitive connec-
tion at the load and the source. This capacitive connection is put to pratical use by enabling
dc power to be transported along the cable to power the remote telephone handset.

Analysis of the frequency response of longer cables indicates that it can be improved
by adding some reactive loading. For this reason, we often hear of loaded lines that include
lumped inductors at regular intervals (typically 66 milli-henry (mH) approximately every
two kilometers). The loading improves the frequency response of the circuit in the range
corresponding to voice signals without requiring additional power. The disadvantage of
loaded lines, however, is their degraded performance at high frequency. Services such as dig-
ital subscriber line (DSL) (discussed later in Chapter 7), which rely on the high-frequency
response of the twisted pairs, do not work well over loaded telephone lines.

In most of what follows, in the rest of the book, we will usually assume that the
medium does not affect the transmission, except possibly through the addition of noise to
the signal. In practice, the medium may affect the signal in a variety of ways as illustrated
in the theme example just described.

2.12 Summary and Discussion

In this chapter, we have described the Fourier transform as a fundamental tool for relating
the time-domain and frequency-domain descriptions of a deterministic signal. The signal
of interest may be an energy signal or a power signal. The Fourier transform includes the
exponential Fourier series as a special case, provided that we permit the use of the Dirac
delta function.
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An inverse relationship exists between the time-domain and frequency-domain descrip-
tions of a signal. Whenever an operation is performed on the waveform of a signal in the
time domain, a corresponding modification is applied to the spectrum of the signal in the
frequency domain. An important consequence of this inverse relationship is the fact that
the time-bandwidth product of an energy signal is a constant; the definitions of signal dura-
tion and bandwidth merely affect the value of the constant.

An important signal processing operation frequently encountered in communication sys-
tems is that of linear filtering. This operation involves the convolution of the input signal with
the impulse response of the filter or, equivalently, the multiplication of the Fourier transform
of the input signal by the transfer function (i.e., Fourier transform of the impulse response) of
the filter. Note, however, that the material presented in the chapter on linear filtering assumes
that the filter is time-invariant (i.e., the shape of the impulse response of the filter is invariant
with respect to when the unit impulse or delta function is applied to the filter).

Another important signal processing operation encountered in communication sys-
tems is that of correlation. This operation may provide a measure of similarity between a
signal and a delayed version of itself, in which case we speak of the autocorrelation func-
tion. When the measure of similarity involves a pair of different signals, however, we speak
of the cross-correlation function. The Fourier transform of the autocorrelation function is
called the spectral density. The Fourier transform of the cross-correlation function is called
the cross-spectral density. Discussions of correlation and spectral density presented in the
chapter were confined to energy signals and power signals exemplified by pulse-like signals
and periodic signals respectively; the treatment of noise (another realization of power sig-
nal) is deferred to Chapter 8.

The final part of the chapter was concerned with the discrete Fourier transform and its
numerical computation. Basically, the discrete Fourier transform is obtained from the stan-
dard Fourier transform by uniformly sampling both the input signal and the output spectrum.
The fast Fourier transform algorithm provides a practical means for the efficient implemen-
tation of the discrete Fourier transform on a digital computer. This makes the fast Fourier
transform algorithm a powerful computational tool for spectral analysis and linear filtering.

ADDITIONAL PROBLEMS

2.19 (a) Find the Fourier transform of the half-cosine pulse shown in Fig. 2.40(a).

g(t) g(t)
A
N N
t
T 0 T 0 T
2 2
(a) (b)
&(1) g(1)

FIGURE 2.40
©) (d) Problem 2.19
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(b) Apply the time-shifting property to the result obtained in part (a) to evaluate the spectrum
of the half-sine pulse shown in Fig. 2.40(b).

(c) What is the spectrum of a half-sine pulse having a duration equal to aT?
(d) What is the spectrum of the negative half-sine pulse shown in Fig. 2.40(c)?
(e) Find the spectrum of the single sine pulse shown in Fig. 2.40(d).

Any function g(#) can be split umambiguously into an even part and an odd part, as shown by

8(2) = g(t) + (1)
The even part is defined by

&t) = S18(t) + g(~1)]

and the odd part is defined by

&(t) = 318(0) ~ &(=1)]

(a) Evaluate the even and odd parts of a rectangular pulse defined by

g(t) = A rect(% - %)

(b) What are the Fourier transforms of these two parts of the pulse?

The following expression may be viewed as an approximate representation of a pulse with finite

rise time:
1 t+T 77142
t) = — exp| ——— | du
s =1 [ e -

where it is assumed that T >> 7. Determine the Fourier transform of g(#). What happens to
this transform when we allow 7 to become zero?

The Fourier transform of a signal g(#) is denoted by G(f). Prove the following properties of

the Fourier transform:

(a) If a real signal g(¢) is an even function of time ¢, the Fourier transform G(f) is purely real.
If the real signal g(#) is an odd function of time #, the Fourier transform G(f) is purely
imaginary.

7 n
(b) t"g(t) =— (i) G(f), where G (f) is the nth derivative of G(f) with respect to f.

@ [ Zt”g(t) ar= (L) e

@ / e (Dgi(t) dt = / Gu(AGHF) df

o] —00

The Fourier transform G(f) of a signal g(¢) is bounded by the following three inequalities:

(@) G(f)] = / lg(0)] dt

*1d
(b) [27fG (f)| = / \ ‘i,(f)\ dt
d’g(t)
dt?

It is assumed that the first and second derivatives of g(¢) exist.

[o¢]

dt

@ ) = [

—00
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&(®)
A
A , FIGURE 2.41
-T 0 T Problem 2.23

Construct these three bounds for the triangular pulse shown in Fig. 2.41 and compare your
results with the actual amplitude spectrum of the pulse.

Consider the convolution of two signals g (#) and g,(¢). Show that

@) 1) * ()] = | Sa (0| * )

) / (a1() * ga(r)] dr = [/;gm ar | * w0

o _
A signal x(#) of finite energy is applied to a square-law device whose output y(¢) is defined by
(1) = x*(2)

The spectrum of x(#) is limited to the frequency interval — W = f = W. Hence, show that the
spectrum of y(¢) is limited to —2W = f =< 2W. Hins: Express y(#) as x(¢) multiplied by itself.
Evaluate the Fourier transform of the delta function by considering it as the limiting form of (a)
rectangular pulse of unit area, and (b) sinc pulse of unit area.

The Fourier transform G(f) of a signal g(¢) is defined by

1, f>0
G(f) =15 =0
0, f<0

Determine the signal g(#).

Consider a pulselike function g(#) that consists of a small number of straight-line segments.
Suppose that this function is differentiated with respect to time ¢ twice so as to generate a
sequence of weighted delta functions, as shown by

d2
L

where the k; are related to the slopes of the straight-line segments.

(a) Given the values of the k; and #;, show that the Fourier transform of g(t) is given by
1 .
G(f) = = 4772](2 Z ki CXp(_]Z’ﬂft,’)

(b) Using this procedure, show that the Fourier transform of the trapezoidal pulse shown in
Fig. 2.42 is given by

A
T

g(1)

sin[mf(z, = £5)] sin[mf(t, + 5)]

[ FIGURE 2.42
—tp -, 0 Iy t Problem 2.28
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A rectangular pulse of amplitude A and duration 2¢, may be viewed as the limiting case of the
trapezoidal pulse shown in Fig. 2.42 as t;, approaches ¢,.

(a) Starting with the result given in part (b) of Problem 2.28, show that as #;, approaches ¢, this
result approaches a sinc function.

(b) Reconcile the result derived in part (a) with the Fourier-transform pair of Eq. (2.10).

Let x(#) and y(#) be the input and output signals of a linear time-invariant filter. Using Rayleigh’s
energy theorem, show that if the filter is stable and the input signal x(#) has finite energy, then
the output signal y(z) also has finite energy. That is, if

/OO lx()|* dt < o

o0

[ () dt < =

(a) Determine the overall amplitude response of the cascade connection shown in Fig. 2.43
consisting of N identical stages, each with a time constant RC equal to 7.

then

(b) Show that as N approaches infinity, the amplitude response of the cascade connection

. . 1 .
approaches the Gaussian function exp<— EfZTZ , where for each value of N, the time
constant 7 is selected so that the condition

2 T?
0= 2
47°N

is satisfied.

Buffer Buffer Buffer
amplifier amplifier amplifier

FIGURE 2.43 Problem 2.31

Suppose that, for a given signal x(z), the integrated value of the signal over an interval T is

required, as shown by
t
y0) =[xy ar
=T

(a) Show that y(#) can be obtained by transmitting the signal x(¢) through a filter with its

transfer function given by
H(f) = T sinc(fT) exp(—jmfT)

(b) An adequate approximation to this transfer function is obtained by using a low-pass filter
with a bandwidth equal to 1/T, passband amplitude response T, and delay T/2. Assuming
this low-pass filter to be ideal, determine the filter output at time ¢ = T due to a unit step
function applied to the filter at # = 0, and compare the result with the corresponding out-
put of the ideal integrator. Note that Si(7) = 1.85 and Si(®) = 7/2.

Show that the two different pulses defined in parts (a) and (b) of Fig. 2.44 have the same energy

spectral density:

4A%T? cos?(wTf)

w2 (4T - 1)

q’g(f) =
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g(1) g(1)
A
t 1
T 0 T 0 T
2 2
(a) (b)

FIGURE 2.44 Problem 2.33

2.34 Determine and sketch the autocorrelation functions of the following exponential pulses:
(a) g(z) = exp(—ar)u(t)
(b) g() = exp(—alt])
(c) g(t) = exp(—at)u(t) — exp(at)u(—t)
where u(¢) is the unit step function, and #(—1) is its time-reversed version.

2.35 Determine and sketch the autocorrelation function of a Gaussian pulse defined by

2.36 The Fourier transform of a signal is defined by sinc(f). Show that the autocorrelation function
of this signal is triangular in form.

2.37 Specify two different pulse signals that have exactly the same autocorrelation function.
2.38 Consider a sinusoidal signal g(¢) defined by
g(t) = Ag + Aq cos(2mfit + 61) + Ay cos(2mht + 6,)

(a) Determine the autocorrelation function R,(7) of this signal.
(b) What is the value of Ry(0)?

(c) Has any information about g(#) been lost in obtaining the autocorrelation function? Explain.

2.39 Determine the autocorrelation function of the triplet pulse shown in Fig. 2.45.

&(1)
A
3T 3T
2 2 ;
_T| Jo|zT
2 2 FIGURE 2.45
_A Problem 2.39

2.40 Let G(f) denote the Fourier transform of a real-valued energy signal g(¢), and Rg(7) denote
its autocorrelation function. Show that

[ dR,(7 oo
/_w[ ! )}h -4’ [ PlGl df

2.41 Determine the cross-correlation function R1,(7) of the rectangular pulse g;(#) and triplet pulse
2 (t) shown in Fig. 2.46, and sketch it. What is R,1(7)? Are these two signals orthogonal to
each other? Why?
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g1 80
1.0 1.0

FIGURE 2.46 Problem 2.41

2.42 Consider two energy signals g1(#) and g,(#). These two signals are delayed by amounts equal
to #; and t, seconds, respectively. Show that the time delays are additive in convolving the pair
of delayed signals, whereas they are subtractive in cross-correlating them.

2.43 (a) An energy signal x(#), its Fourier transform X(f), autocorrelation function R,(7), and
energy spectral density W (f) are all related, directly or indirectly. Construct a flow-graph
that portrays all the possible direct relationships between them.

(b) If you are given the frequency-domain description X (f), the autocorrelation function R (1)
can be calculated from X(f). Outline two ways in which this calculation can be performed.

2.44 Find the autocorrelation function of a power signal g(#) whose power spectral density is depicted

in Fig. 2.47. What is the value of this autocorrelation function at the origin?

Sf)

FIGURE 2.47
i) 1 0 1 2 f Problem 2.44

2.45 Consider the square wave g(¢) shown in Fig. 2.48. Find the power spectral density, average
power, and autocorrelation function of this square wave. Does the wave have dc power? Explain
your answer.

g®

1.0

t (seconds)

-1.0

FIGURE 2.48 Problem 2.45

2.46 Consider two periodic signals g,1(¢) and g, () that have the following complex Fourier series
representations:

x jlarnt
gp1(t) = n;xcl,n exp<TO>



2.47

2.48

2.49

2.50

Additional Problems 97

and

The two signals have a common period equal to Tj.
Using the following definition of cross-correlation for a pair of periodic signals,

To/2 .
Ris(r) = 7 / (Ol = 7) de
— 1o

show that the prescribed pair of periodic signals satisfies the Fourier-transform pair

n

Ry (7) > 1, na, 5<f - T>
0

n=—o

A periodic signal g, () of period Tj is represented by the complex Fourier series

o) = S o exp(i2mnt/Ty)

n=—ow

where the ¢, are the complex Fourier coefficients. The autocorrelation function of g,(¢) is

defined by
1 [T
ko) = [ a0 o) de
(a) Consider the sinusoidal wave
gy(t) = A cos(27f.t + 0)

Determine the autocorrelation function Rgp(’r) and plot its waveform.
(b) Show that R, (0) = A?)2.

Repeat parts (a) and (b) of Problem 2.47 for the square wave:

NS

Ty
A, - =t=—
’ 4

gp(t) =
0, for the remainder of period T

Determine the power spectral density of (a) the sinusoidal wave of Problem 2.47, and (b) the
square wave of Problem 2.48.

Following a procedure similar to that described in Section 2.10 that led to the flow graph of
Fig. 2.36 for the 8-point FFT algorithm based on decimation-in-frequency, do the following:

(a) Develop the corresponding flow graph for the 8-point FFT algorithm based on decimation-
in-time.

(b) Compare the flow graph obtained in part (a) with that described in Fig. 2.36, stressing the
similarities and differences between these two basic methods for deriving the FFT algorithm.
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ADVANCED PROBLEMS

2.51 (a) The root mean-square (rms) bandwidth of a low-pass signal g(¢) of finite energy is defined by

o0 12
[ rcor ar

/_ GO df

Wims =

where |G (f)]? is the energy spectral density of the signal. Correspondingly, the root mean-
square (rms) duration of the signal is defined by

o 1/2
/ g2 dr

o0

/_ lg(1) di

Tims =

Using these definitions, show that

T Wi = 5=
Assume that |g(#)| — 0 faster than 1/\/H as |t| — o.
(b) Consider a Gaussian pulse defined by
g(t) = exp(—mt?)
Show that, for this signal, the equality

1

T;’ms \X/rms = E

can be reached.
Hint: Use Schwarz’s inequality (see Appendix 5).

00 2 00 00
{ / €100 + s3] de) =4 [ Ja@F [ et a
in which we set

a(t) = t(t)
and

d
al) = S

2.52 The Hilbert transform of a Fourier transformable signal g(#) is defined by
-1 [

T )l — T

Correspondingly, the inverse Hilbert transform is defined by

- L [T E,

T )l — T
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Using these two formulas, derive the following set of Hilbert-transform pairs:

g(2) g(t)
sin ¢ 1 — cost
t t
1 1
_il R + =
rect(z) . n (t 2)/(1‘ 2)‘
1
S(t —
(?) i
1 t
1+ ¢ 1+ #2

2.53 Evaluate the inverse Fourier transform g(#) of the one-sided frequency function

CXp(—][), f>0
5 f:()
b f<0

| =

G =

S N

Hence, show that g(¢) is complex, and that its real and imaginary parts constitute a Hilbert-
transform pair.

2.54 A Hilbert transformer may be viewed as a device whose transfer function exhibits the follow-
ing characteristics:
(a) The amplitude response is unity for all positive and negative frequencies.

(b) The phase response is +90° for negative frequencies and —90° for positive frequencies.
Starting with the definition of the Hilbert transform given in Problem 2.52, demonstrate the
frequency-domain description embodied in parts (a) and (b).

(c) Is the Hilbert transformer physically realizable? Justify your answer.



CHAPTER 3

AMPLITUDE MODULATION

Modulation is defined as the process by which some characteristic of a carrier wave is var-
ied in accordance with an information-bearing signal. The carrier is needed to facilitate the
transportation of the modulated signal across a band-pass channel from the transmitter to
the receiver. A commonly used carrier is a sinusoidal wave, the source of which is physi-
cally independent of the source of the information-bearing signal. When the information-
bearing signal is of an analog kind, we speak of continuous-wave modulation, a term that
stresses continuity of the modulated wave as a function of time.

In the context of communications, a primary motivation for modulation is to facili-
tate transmission of the information-bearing signal over a communication channel (e.g.,
radio channel) with a prescribed passband. In continuous-wave modulation, this is made
possible by varying the amplitude or angle of the sinusoidal carrier wave. On this basis, we
may classify continuous-wave modulation into two broadly defined families: amplitude
modulation and angle modulation. These two families of modulation distinguish them-
selves by offering entirely different spectral characteristics and therefore different practical
benefits. The classification is made on the basis of whether, on the one hand, the amplitude
of the sinusoidal carrier wave, or, on the other hand, the phase or frequency (and there-
fore) the angle of the sinusoidal carrier wave, is varied in accordance with the information-
bearing signal. The family of amplitude modulation is studied in this chapter, followed by
the study of angle modulation in the next chapter.

In Chapter 1, we identified system complexity and the two primary communication
resources—namely, transmitted power and channel bandwidth—as the central issues
involved in the design of a communication system. With these issues in mind, in this chap-
ter, we will study four linear modulation strategies that constitute the amplitude modula-
tion family:

amplitude modulation (AM)
double sideband-suppressed carrier (DSB-SC)

single sideband (SSB)
vestigial sideband (VSB)

These four types of modulation differ from each other by virtue of their spectral character-
istics. Their study will teach us the following lessons:

» Lesson 1: Fourier analysis provides a powerful mathematical tool for developing mathe-
matical as well as physical insight into the spectral characterization of linear modulation
strategies.

100



3.1 Amplitude Modulation 101

» Lesson 2: The implementation of analog communications is significantly simplified by
using AM, at the expense of transmitted power and channel bandwidth.

» Lesson 3: The utilization of transmitted power and channel bandwidth is improved
through well-defined modifications of an amplitude-modulated wave’s spectral content at
the expense of increased system complexity.

In short, we may make the statement:

There is no free lunch in designing a communication system: for every gain that is made,
there is a price to be paid.

3.1 Amplitude Modulation

THEORY

Consider a sinusoidal carrier wave c(t) defined by
c(t) = A, cos(2mf.t) (3.1)

where A, is the carrier amplitude and [, is the carrier frequency. The information-bearing
signal or message signal is denoted by m(t); the terms “information-bearing signal” and
“message signal” are used interchangeably throughout the book. To simplify the exposi-
tion without affecting the results obtained and conclusions reached, we have assumed that
the phase of the carrier wave is zero in Eq. (3.1). Amplitude modulation' (AM) is formally
defined as a process in which the amplitude of the carrier wave c(t) is varied about a mean
value, linearly with the message signal m(t). An amplitude-modulated (AM) wave may
thus be described as a function of time as follows:

s(t) = A1 + kym(t)] cos(2mf.t) (3.2)

where k, is a constant called the amplitude sensitivity of the modulator responsible for the gen-
eration of the modulated signal s(¢). Typically, the carrier amplitude A, and the message signal
m(t) are measured in volts, in which case the amplitude sensitivity k, is measured in volt™!.
Notice that if the message signal 71(t) is switched off, the sinusoidal carrier is left intact.

Figure 3.1(a) shows a message signal m2(¢), and Figs. 3.1(b) and 3.1(c) show the cor-
responding AM wave s(¢) for two values of amplitude sensitivity k, and a carrier ampli-
tude A, = 1 volt.

In amplitude modulation, information pertaining to the message signal 7(¢) resides
solely in the envelope, which is defined as the amplitude of the modulated wave s(#)—that
is, A1 + k,m(t)|. From this expression, we observe that the envelope of s(t) has essen-
tially the same shape as the message signal #1(#) provided that two conditions are satisfied:

1. The amplitude of k,m(t) is always less than unity; that is,
|kam(t)| < 1, for all ¢ (3.3)

This condition is illustrated in Fig. 3.1(b); it ensures that the function 1 + k,m(2) is
always positive, in which case we may express the envelope of the AM wave s(t) of
Eq. (3.2) simply as AJ[1 + k,m(t)]. When the amplitude sensitivity k, of the

! Throughout the book, the term “amplitude modulation” or AM, for short, is used to refer to that particular form
of modulation in which the carrier wave and both sidebands are present.
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m(t)

(a)

s(t)

s(t)

()

FIGURE 3.1 Illustration of the amplitude modulation process. (a) Message signal m1(t).
(b) AM wave for k,m(t) < 1 for all t. () AM wave for |k,m(t)| > 1 for some t.

modulator is large enough to make |k,72(t)| > 1 for any ¢, the carrier wave becomes
over modulated, resulting in carrier phase reversals whenever the factor 1 + k,m(t)
crosses zero. The modulated wave then exhibits envelope distortion, as in Fig. 3.1(c).
It is therefore apparent that by avoiding overmodulation, a one-to-one relationship
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is maintained between the envelope of the AM wave and the modulating wave for all
values of time. The absolute maximum value of k,7(#) multiplied by 100 is referred
to as the percentage modulation.

2. The carrier frequency [, is much greater than the highest frequency component W of
the message signal m(#)—that is,

f.>Ww (3.4)

We call W the message bandwidth. If the condition of Eq. (3.4) is not satisfied, an enve-
lope cannot be visualized (and therefore detected) satisfactorily.

Provided that the conditions of Egs. (3.3) and (3.4) are satisfied, demodulation of the AM

wave is achieved by using an envelope detector, which is defined as a device whose output

traces the envelope of the AM wave acting as the input signal. The process of envelope
detection is discussed later in the section.

The next issue for discussion is the frequency-domain description of AM. Let

m(t) == M(f), where the Fourier transform M(f) is called the message spectrum. From

Eq. (3.2), we find that the Fourier transform or spectrum of the AM wave s(t) is given by

AC kﬂAC
S = I8 = ) + 8(F + )] + "5 IM(F— ) + M(F+ ()] (3.9)

where we have used the relations:

cos(2mf.t) = %[exp(jlwfct) + exp(—j27f.1)]

exp(j2mfet) == &(f — fc)

and

m(t) exp(j2mft) == M(f — fc)

Following the terminology introduced in Chapter 2, the §(f) in Eq. (3.5) denotes the Dirac
delta function in the frequency domain.

Suppose that the message signal 71(t) is band-limited to the interval —W = f = W,
as in Fig. 3.2(a). The shape of the spectrum shown in this figure is intended for the pur-
pose of illustration only. We find from Eq. (3.5) that the spectrum S(f) of the AM wave is
as shown in Fig. 3.2(b) for the case when f. > W. This spectrum consists of two delta func-
tions weighted by the factor A./2 and occurring at *=f,, and two versions of the message
spectrum translated in frequency by *f, and scaled in amplitude by k,A./2. From the spec-
trum of Fig. 3.2(b), we make three important observations:

1. As a result of the modulation process, the spectrum of the message signal m:(t) for neg-
ative frequencies extending from — W to 0 becomes completely visible for positive (i.e.,
measurable) frequencies, provided that the carrier frequency satisfies the condition
f. > W, herein lies the importance of the idea of “negative” frequencies, which was
emphasized in Chapter 2.

2. For positive frequencies, the portion of the spectrum of an AM wave lying above the
carrier frequency [, is referred to as the upper sideband, whereas the symmetric por-
tion below .. is referred to as the lower sideband. The condition f. > W ensures that
the sidebands do not overlap. Moreover, with the upper sideband, lower sideband,
and carrier fully represented in the spectrum of Fig. 3.2(b), the modulated wave is
referred to as AM, in accordance with footnote 1 on page 101.
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FIGURE 3.2 (a) Spectrum of message signal m:(¢). (b) Spectrum of AM wave s(t).

3. For positive frequencies, the highest frequency component of the AM wave equals
f- + W, and the lowest frequency component equals f. — W. The difference between
these two frequencies defines the transmission bandwidth Bt of the AM wave, which

is exactly twice the message bandwidth W; that is,

Br=2W (3.6)

EXAMPLE 3.1 Single-Tone Modulation

Consider a modulating wave m(¢) that consists of a single tone or frequency component;
that is,

m(t) = A,, cos(27f,,t)
where A,, is the amplitude of the sinusoidal modulating wave and £, is its frequency (see Fig.

3.3(a)). The sinusoidal carrier wave has amplitude A, and frequency /. (see Fig. 3.3(b)). The
corresponding AM wave is therefore given by

s(t) = A1 + p cos(2af,,t)] cos(2mft) (3.7)
where
B = kA

The dimensionless constant w is called the modulation factor, or the percentage modulation
when it is expressed numerically as a percentage. To avoid envelope distortion due to over-
modulation, the modulation factor u must be kept below unity, as explained previously.
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FIGURE 3.3 [llustration of the time-domain (on the left) and frequency-domain (on the
right) characteristics of amplitude modulation produced by a single tone. (@) Modulating
wave. (b) Carrier wave. (c) AM wave.

Figure 3.3(c) shows a sketch of s(¢) for w less than unity. Let A,,x and Ay, denote the
maximum and minimum values of the envelope of the modulated wave, respectively. Then, from
Eq. (3.7) we get

Amax _ A(1 + p)

Amin A1 — n)
Rearranging this equation, we may express the modulation factor as
Amax B Amin
Amax + Amin

W=

Expressing the product of the two cosines in Eq. (3.7) as the sum of two sinusoidal waves,
one having frequency f. + f,, and the other having frequency f, — f,,., we get

s(t) = A, cos(2mft) + %MAC cos[2m(f. + £.)1] + %MAC cos[2m(f. — Fu)t]

The Fourier transform of s(2) is therefore

S() = S AdS( = £ + 8(f + £)]

4 HALS( = £ = fu) + 8(F+ . + f)]

AL — fo + f) + (/£ f)]

Thus the spectrum of an AM wave, for the special case of sinusoidal modulation, consists of
delta functions at =f,, f. * f,,, and —f, = f,,, as shown in Fig. 3.3(c).
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In practice, the AM wave s(#) is a voltage or current wave. In either case, the aver-
age power delivered to a 1-ohm resistor by s(#) is comprised of three components:

. 1
Carrier power = EA?
. 15,0
Upper side-frequency power = i A
. _ 1 242
Lower side-frequency power = i A

For a load resistor R different from 1 ohm, which is usually the case in practice, the expres-
sions for carrier power, upper side-frequency power, and lower side-frequency power are
merely scaled by the factor 1/R or R, depending on whether the modulated wave s(t) is a
voltage or a current, respectively. In any case, the ratio of the total sideband power to the
total power in the modulated wave is equal to u?/(2 + w?), which depends only on the
modulation factor w. If w = 1—that is, 100 percent modulation is used—the total power
in the two side frequencies of the resulting AM wave is only one-third of the total power
in the modulated wave.

Figure 3.4 shows the percentage of total power in both side frequencies and in the car-
rier plotted versus the percentage modulation. Notice that when the percentage modula-
tion is less than 20 percent, the power in one side frequency is less than 1 percent of the
total power in the AM wave.

COMPUTER EXPERIMENT: AM

For the AM experiment, we will study sinusoidal modulation based on the following
parameters:

Carrier amplitude, A =1

Carrier frequency, f. = 0.4Hz

Modulation frequency, f,, = 0.05 Hz

We wish to display and analyze 10 full cycles of the modulated wave, corresponding to a
total duration of 200 seconds. To perform the experiment on a digital computer, the mod-
ulated wave is sampled at the rate f; = 10 Hz, obtaining a total of 200 X f, = 2000 Hz
data points. The frequency band occupied by the modulated wave is —5 Hz = f = 5 Hz.
Since the separation between the carrier frequency and either side frequency is equal to
the modulation frequency f,, = 0.05 Hz, we would like to have a frequency resolution
f, = 0.005 Hz. To achieve this frequency resolution, it is reccommended that the number of
frequency samples satisfies the condition:

100

£g %

=}

ke _g* Carrier

52 @

g g

S £ 40

L E Sidebands
20

FIGURE 3.4 Variations of carrier power and
total sideband power with percentage
Percentage modulation modulation in amplitude modulation.

0 20 40 60 80 100
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fs 10
M=—=——=2000
f  0.005
We therefore choose M = 2000. To approximate the Fourier transform of the modulated
wave, we use a 2000-point FFT algorithm; the FFT algorithm was described in Chapter 2.
The only variable parameter in the full AM experiment is the modulation factor p,

with respect to which three different situations are investigated:

w = 0.5, corresponding to undermodulation
p = 1.0, corresponding to 100 percent modulation
@ = 2.0, corresponding to overmodulation

The results of the investigations are displayed in Figs. 3.5 through 3.7, details of which are
described next.

1. Modulation factor u = 0.5
Figure 3.5(a) displays 10 cycles of the AM wave, corresponding to u = 0.5. The
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FIGURE 3.5 Amplitude modulation with 50 percent modulation: (¢) AM wave, (b) magnitude
spectrum of the AM wave, and (¢) expanded spectrum around the carrier frequency.



108

CHAPTER 3 AMPLITUDE MODULATION

envelope of the modulated wave is clearly seen to follow the sinusoidal modulating
wave faithfully. This means that we can use an envelope detector for demodulation.
Figure 3.5(b) displays the magnitude (amplitade) spectrum of the modulated

wave. In Fig. 3.5(c), we have zoomed in on the fine structure of the modulated wave
around the carrier frequency. The two figures clearly display the exact relationships
between the two side frequencies and the carrier, in accordance with amplitude mod-
ulation theory, as summarized here:

The lower side frequency, the carrier, and the upper side frequency are located at

(f — fm) = £0.35Hz, f, = =0.4 Hz, and (f. + f,,) = £0.45 Hz.

The amplitude of both side frequencies is (n/2) = 0.25 times the amplitude of

the carrier.

. Modulation factor u = 1.0
Figure 3.6(a) shows 10 cycles of the modulated wave with the same parameters as in
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FIGURE 3.6 Amplitude modulation with 100 percent modulation: () AM wave, (b) magnitude
spectrum of the AM wave, and (c) expanded spectrum around the carrier frequency.
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Fig. 3.5(a), except for the fact that w = 1.0. This new figure shows that the modu-
lated wave is now on the verge of overmodulation.

The magnitude spectrum of the modulated wave is shown in Fig. 3.6(b), and its
zoomed version (around the carrier frequency) is shown in Fig. 3.6(c). Here again, we
see that the basic structure of the modulated wave’s magnitude spectrum is in perfect
agreement with amplitude modulation theory.

Modulation factor u = 2.0

Figure 3.7(a) demonstrates the effect of overmodulation by using a modulation fac-
tor w = 2.0. Here we see that there is no clear relationship between the envelope of
the overmodulated wave and the sinusoidal modulating wave. As expected, the result
implies that an envelope detector will not work for u = 2.0.
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FIGURE 3.7 Amplitude modulation with 200 percent modulation: (a) AM wave,
(b) magnitude spectrum of the AM wave, and (¢) expanded spectrum around the carrier
frequency.
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Nevertheless, the spectral content of the overmodulated wave displayed in
Figs. 3.7(b) and 3.7(c) follows exactly what the amplitude modulation theory predicts.

» Drill Problem 3.1 For 100 percent modulation, is it possible for the envelope of AM to
become zero for some time #? Justify your answer. <

» Drill Problem 3.2 For a particular case of AM using sinusoidal modulating wave, the
percentage modulation is 20 percent. Calculate the average power in (a) the carrier and (b) each
side frequency. <

» Drill Problem 3.3 In AM, spectral overlap is said to occur if the lower sideband for
positive frequencies overlaps with its image for negative frequencies. What condition must the
modulated wave satisfy if we are to avoid spectral overlap? Assume that the message signal
m(t) is of a low-pass kind with bandwidth W. <

» Drill Problem 3.4 A square-law modulator for generating an AM wave relies on the
use of a nonlinear device (e.g., diode); Fig. 3.8 depicts the simplest form of such a modulator.
Ignoring higher order terms, the input-output characteristic of the diode-load resistor combi-
nation in this figure is represented by the square law:

va(t) = aa(t) + apvi(t)
where
vi(t) = A, cos(2mf.t) + m(t)

is the input signal, »,(#) is the output signal developed across the load resistor, and a; and a,
are constants.
(a) Determine the spectral content of the output signal v, (#).

(b) To extract the desired AM wave from v,(#), we need a band-pass filter (not shown in
Fig. 3.8). Determine the cutoff frequencies of the required filter, assuming that the mes-
sage signal is limited to the band —W = f = W.

(c) To avoid spectral distortion by the presence of undesired modulation products in v, (#),
the condition W < f,. > 3 W must be satisfied; validate this condition. <

Diode
(Nonlinear device)

A

Message signal

m(t)
vy(2) §Load vy(t)

Carrier wave
A _cosQ2mrf,t)

FIGURE 3.8 Nonlinear circuit using a diode.
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ENVELOPE DETECTION

The square-law modulator addressed in Problem 3.4 is testimony to the implementational
simplicity involved in building an AM transmitter. The implementational simplicity of AM
is further reinforced when we consider the demodulation of an AM wave, which is the
inverse of modulation. In particular, the demodulation of an AM wave can be accomplished
by means of a simple and yet highly effective circuit called the envelope detector?, provided
two practical conditions are satisfied:

1. The AM wave is narrowband, which means that the carrier frequency is large com-
pared to the message bandwidth.

2. The percentage modulation in the AM wave is less than 100 percent.

An envelope detector of the series type is shown in Fig. 3.9(a), which consists of a diode
and resistor-capacitor (RC) filter. The operation of this envelope detector is as follows. On
a positive half-cycle of the input signal, the diode is forward-biased and the capacitor C
charges up rapidly to the peak value of the input signal. When the input signal falls below
this value, the diode becomes reverse-biased and the capacitor C discharges slowly through
the load resistor R;. The discharging process continues until the next positive half-cycle.
When the input signal becomes greater than the voltage across the capacitor, the diode
conducts again and the process is repeated. We assume that the diode is ideal, presenting
resistance 77 to current flow in the forward-biased region and infinite resistance in the
reverse-biased region. We further assume that the AM wave applied to the envelope detec-
tor is supplied by a voltage source of internal impedance R;. The charging time constant
(77 + R;) C must be short compared with the carrier period 1/f.—that is,

(rr + R)C < 1
fe

so that the capacitor C charges rapidly and thereby follows the applied voltage up to the
positive peak when the diode is conducting. On the other hand, the discharging time con-
stant R;C must be long enough to ensure that the capacitor discharges slowly through the
load resistor R; between positive peaks of the carrier wave, but not so long that the capac-
itor voltage will not discharge at the maximum rate of change of the modulating wave—
that is,

1 1
— << RIC < —
! W

fe

where W is the message bandwidth. The result is that the capacitor voltage or detector
output is nearly the same as the envelope of the AM wave, as demonstrated next.

2In the Preface, we pointed out that the approach taken in this book is from a systems perspective. In describing
the envelope detector in detail, we are clearly making an exception to this approach. The reason for doing so is
in recognition of the fact that the envelope detector, by virtue of its simplicity, is used in almost all commercial
AM receivers. Indeed, the simplicity of building AM transmitters and receivers is such a compelling economic fac-
tor that, despite the ever-increasing dominance of digital communications, amplitude modulation will continue
to find practical use in one form or another.
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FIGURE 3.9 Envelope detector. (@) Circuit diagram. (b) AM wave input. (¢) Envelope
detector output
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COMPUTER EXPERIMENT: ENVELOPE DETECTION FOR SINUSOIDAL AM

Consider the sinusoidal AM wave shown in Fig. 3.9(b), assuming 50 percent modulation.
The envelope detector output is shown in Fig. 3.9(c). This latter waveform is computed
assuming that the diode is ideal, having a constant resistance 7r when forward-biased and
infinite resistance when reverse-biased. The numerical values used in the computation of
Fig. 3.9(c) are as follows:

Source resistance R, =750
Forward resistance rp=25Q
Load resistance R; =10 kQ
Capacitance C = 0.01 uF

Message bandwidth W = 1 kHz
Carrier frequency f. = 20 kHz

Notice that the envelope detector output includes a high-frequency ripple; this ripple can
be removed by using a low-pass filter (not shown in Fig. 3.9 (a))

3.2 Virtues, Limitations, and Modifications
of Amplitude Modulation

Amplitude modulation is the oldest method of performing modulation. As already remarked
in Section 3.1, its biggest virtue is the ease with which it is generated and reversed. The net
result is that an amplitude modulation system is relatively inexpensive to build.

However, from Chapter 1 we recall that transmitted power and channel bandwidth
are our two primary communication resources and they should be used efficiently. In this
context, we find that the amplitude modulation defined in Eq. (3.2) suffers from two major
practical limitations:

1. Amplitude modulation is wasteful of transmitted power. The carrier wave c(¢) is com-
pletely independent of the information-bearing signal 72(¢). The transmission of the
carrier wave therefore represents a waste of power, which means that in amplitude
modulation only a fraction of the total transmitted power is actually affected by m(#).

2. Amplitude modulation is wasteful of channel bandwidth. The upper and lower side-
bands of an AM wave are uniquely related to each other by virtue of their symmetry about
the carrier frequency; hence, given the amplitude and phase spectra of either sideband,
we can uniquely determine the other. This means that insofar as the transmission of
information is concerned, only one sideband is necessary, and the communication chan-
nel therefore needs to provide only the same bandwidth as the message signal. In light
of this observation, amplitude modulation is wasteful of channel bandwidth as it requires
a transmission bandwidth equal to twice the message bandwidth.

To overcome these two limitations of AM, we must make certain changes that result in
increased system complexity of the amplitude modulation process. In effect, we trade off
system complexity for improved utilization of communication resources. Starting with
amplitude modulation, we can distinguish three modifications of amplitude modulation:

1. Double sideband-suppressed carrier (DSB-SC) modulation, in which the transmitted
wave consists of only the upper and lower sidebands. Transmitted power is saved
here through the suppression of the carrier wave, but the channel bandwidth require-
ment is the same as before (i.e., twice the message bandwidth).

2. Single sideband (SSB) modulation, in which the modulated wave consists only of the
upper sideband or the lower sideband. The essential function of SSB modulation is
therefore to translate the spectrum of the modulating signal (with or without inversion)
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to a new location in the frequency domain. Single sideband modulation is particularly
suited for the transmission of voice signals by virtue of the energy gap that exists in
the spectrum of voice signals between zero and a few hundred hertz. SSB is the opti-
mum form of continuous-wave modulation in that it requires the minimum trans-
mitted power and minimum channel bandwidth; its principal disadvantages are
increased complexity and limited applicability.

3. Vestigial sideband (VSB) modulation, in which one sideband is passed almost com-
pletely and just a trace, or vestige, of the other sideband is retained. The required
channel bandwidth is therefore slightly in excess of the message bandwidth by an
amount equal to the width of the vestigial sideband. This form of modulation is well
suited for the transmission of wideband signals such as television signals that contain
significant components at extremely low frequencies. In commercial television broad-
casting, a sizable carrier is transmitted together with the modulated wave, which
mabkes it possible to demodulate the incoming modulated signal by an envelope detec-
tor in the receiver and thereby simplify the receiver design.

In Section 3.3 we discuss DSB-SC modulation, followed by discussions of SSB and VSB
forms of modulation in subsequent sections and in that order.

3.3 Double Sideband-Suppressed

Carrier Modulation

THEORY

Basically, double sideband-suppressed carrier (DSB-SC) modulation consists of the prod-
uct of the message signal 7(¢) and the carrier wave ¢(¢), as shown in the equation

s(t) = c(t)m(¢)
= A, cos(2mf t)m(t) (3.8)

Accordingly, the device used to generate the DSB-SC modulated wave is referred to as a
product modulator. From Eq. (3.8) we also note that unlike amplitude modulation, DSB-SC
modulation is reduced to zero whenever the message signal m(t) is switched off.

Most noticeably, however, is the fact that the modulated signal s(#) undergoes a phase
reversal whenever the message signal m(2) crosses zero, as indicated in Fig. 3.10(b) for the
message signal 72(¢) depicted in part (a) of the figure. The envelope of a DSB-SC modulated
signal is therefore different from the message signal, which means that simple demodula-
tion using an envelope detection is not a viable option for DSB-SC modulation.

From Eq. (3.8), the Fourier transform of s(¢) is obtained as

S() = SAIM(f = £ + M(fF+ )] 3.9)

where m(t) == M(f). For the case when the message signal 72(¢) is limited to the inter-
val =W = f = W, as in Fig. 3.11(a), we find that the spectrum S(f) of the DSB-SC wave
s(¢) is as illustrated in Fig. 3.11(b). Except for a change in scale factor, the modulation
process simply translates the spectrum of the message signal by £, to the right and by —f.
to the left. Of course, the transmission bandwidth required by DSB-SC modulation is the
same as that for amplitude modulation—namely, 2W.

In short, insofar as bandwidth occupancy is concerned, DSB-SC offers no advantage
over AM. Its only advantage lies in saving transmitted power, which is important enough
when the available transmitted power is at a premium.
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EXAMPLE 3.2 Sinusoidal DSB-SC spectrum

Consider DSB-SC modulation using a sinusoidal modulating wave of amplitude A,, and fre-
quency f,,, and operating on a carrier of amplitude A, and frequency f.. The message spectrum is

M(F) = 3 An(F = ) + 5 A (F + o)

Invoking Eq. (3.9), the shifted spectrum %ACM (f — 1) defines the two side-frequencies for pos-
itive frequencies:

TAAB = (o)) AARD = (F = )

The other shifted spectrum of Eq. (3.9)—namely, %ACM(f + f.),—defines the remaining two
side-frequencies for negative frequencies:

1 1

TAABE+ (= ) G AAS + (f + fi))

which are the images of the first two side-frequencies with respect to the origin, in reverse
order.

» Drill Problem 3.5 For the sinusoidal DSB-SC modulation considered in Example 3.2,
what is the average power in the lower or upper side-frequency, expressed as a percentage of
the average power in the DSB-SC modulated wave? <

COHERENT DETECTION

Since the envelope of the DSB-SC modulated wave s(¢) is different from the message signal
m(t), we have to find some other means for recovering m(¢) from s(#). To this end, we rec-
ognize that cos?(2f.t) contains a constant term, as shown by the trigonometric identity

1 1
2
=~ + —cos(2
cos“(0) ) cos(20)

In light of this relation rewritten for 6 = 27f.t, we see from Eq. (3.8) that the recovery of
the message signal #1(t) can be accomplished by first multiplying s(¢) with a locally gen-
erated sinusoidal wave and then low-pass filtering the product. It is assumed that the local
oscillator signal is exactly coherent or synchronized, in both frequency and phase, with
the carrier wave ¢(¢) used in the product modulator to generate s(¢). This method of
demodulation is known as coberent detection or synchronous demodulation.

It is instructive to derive coherent detection as a special case of the more general
demodulation process using a local oscillator signal of the same frequency but arbitrary
phase difference ¢, measured with respect to the carrier wave ¢(). Thus, denoting the local
oscillator signal by A} cos(27f.t + ¢) and using Eq. (3.8) for the DSB-SC wave s(z), we
find that the product modulator output in Fig. 3.12 is

v(t) = A, cos(2mf.t + ¢)s(¢)
= A A, cos(2mf.t) cos(2mf.t + d)m(t)

= %ACA’C cos(4mf.t + d)m(t) + %ACA’C cos(p)m(t) (3.10)
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Modulated u(®) Demodulated
wave s(f) . Froduct Low-pass ___ signal FIGURE 3.12 Block
modulator filter .
vo(1) diagram of coherent
detector, assuming that the
A/ cosQmfct+ ) local oscillator is out of
phase by ¢ with respect to
Local the sinusoidal carrier
oscillator

oscillator in the transmitter.

where we have used the trigonometric identity
1 1
cos(01) cos(6,) = §C05(91 +6,) + Ecos(el - 6,)

where, for the application at hand, we have 6; = 27f.# and 6, = 27f.t + ¢.

The first term in Eq. (3.10) represents a new DSB-SC modulated signal with carrier
frequency 2f., whereas the second term is proportional to the message signal 72(¢). This is
further illustrated by the spectrum V(f) shown in Fig. 3.13, where it is assumed that the
message signal m(¢) is limited to the interval —W = f = W. It is therefore apparent that
the first term in Eq. (3.10) is removed by the low-pass filter in Fig. 3.12, provided that the
cut-off frequency of this filter is greater than W but less than 2f, — W. This is satisfied by
choosing f, > W. At the filter output we then obtain a signal given by

v,(t) = %ACA'C cos(d)m(t) (3.11)
The demodulated signal v, () is therefore proportional to () when the phase error
¢ is a constant. The amplitude of this demodulated signal is maximum when ¢ = 0, and
it is minimum (zero) when ¢ = *m/2. The zero demodulated signal, which occurs for
¢ = *a/2, represents the quadrature null effect, which is an inherent property of coher-
ent detection. Thus the phase error ¢ in the local oscillator causes the detector output to
be attenuated by a factor equal to cos ¢. As long as the phase error ¢ is constant, the detec-
tor output provides an undistorted version of the message signal #1(t). In practice, how-
ever, we usually find that the phase error ¢ varies randomly with time, due to random
variations in the communication channel. The result is that at the detector output, the mul-
tiplying factor cos ¢ would also vary randomly with time, which is obviously undesirable.
Therefore, provision must be made in the system to maintain the local oscillator in the
receiver in synchronism, in both frequency and phase, with the carrier wave used to gen-
erate the DSB-SC modulated signal in the transmitter. The resulting system complexity is
the price that must be paid for suppressing the carrier wave to save transmitted power.

VO 1y aim 0
| P e (0)cosop
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FIGURE 3.13 Illustration of the spectrum of product modulator output v(%) in the

coherent detector of Fig. 3.12, which is produced in response to a DSB-SC modulated wave
as the detector input.
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» Drill Problem 3.6 The sinusoidally modulated DSB-SC wave of Example 3.2 is applied
to a product modulator using a locally generated sinusoid of unit amplitude, and which is syn-
chronous with the carrier used in the modulator.
(a) Determine the output of the product modulator, denoted by v(#).
(b) Identify the two sinusoidal terms in v(#) that are produced by the DSB-SC modulated
wave for positive frequencies, and the remaining two sinusoidal terms produced by the
DSB-SC modulated wave for negative frequencies. <

» Drill Problem 3.7 The coherent detector for the demodulation of DSB-SC fails to operate
satisfactorily if the modulator experiences spectral overlap. Explain the reason for this failure. <«

CoMPUTER EXPERIMENT: DSB-SC

For the experimental study of DSB-SC modulation, we follow the same setup described in
Section 3.1, except for the changes brought on by the use of DSB-SC in place of AM.
Results of the experiment are described under two points:
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FIGURE 3.14 DSB-SC modulation: (a) DSB-SC modulated wave, (b) magnitude spectrum
of the modulated wave, and (c) expanded spectrum around the carrier frequency.
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. Figure 3.14(a) displays 10 cycles of the DSB-SC modulated wave produced by the sinu-

soidal modulating wave of frequency 0.05 Hz. As expected, the envelope of the mod-
ulated wave bears no clear relationship to the sinusoidal modulating wave. Accordingly,
we must use coherent detection for demodulation, which is discussed under point 2.

Figure 3.14(b) shows the magnitude spectrum of the modulated wave. An
expanded view of the spectrum around the carrier frequency of frequency 0.4 Hz is
shown in Fig. 3.14(c). These two figures clearly show that the carrier is indeed sup-
pressed, and that the upper and lower side frequencies are located exactly where they
should be—namely, at £0.45 and *0.35 Hz, respectively.

. To perform coherent detection, we proceed in two stages: (i) multiply the DSB-SC mod-

ulated wave by an exact replica of the carrier, and (ii) pass the product through a
low-pass filter, as described under coherent detection in this section. With two oper-
ational stages involved in the coherent detection process, the results of this part of the
experiment are presented as follows:

(1) Figure 3.15(a) displays the waveform of the product modulator’s output in the
coherent detector. The magnitude spectrum of this waveform is shown in
0.35
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FIGURE 3.15 Coherent detection of DSB-SC modulated wave: (a) Waveform of signal
produced at the output of product modulator, (b) amplitude spectrum of the signal in part
(a); (c) waveform of low-pass filter output; and (d) amplitude spectrum of signal in part (c).
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Fig. 3.15(b), which readily shows that the waveform consists of the following
components:
A sinusoidal component with frequency 0.05 Hz, representing the sinusoidal
modulating wave.

A new DSB-SC modulated wave with double carrier frequency of 0.8 Hz; in
actuality, the two side-frequencies of this modulated wave are located at 0.75
and 0.85 Hz, exactly where they should be.

(ii) Figure 3.15(c) shows the waveform of the coherent detector’s overall output,
which results after passing the product modulator’s output through the low-pass
filter. Except for transient effects experienced early on in the detection process,
the waveform is recognized to be the desired sinsuoidal modulating wave of
frequency 0.05 Hz. This result is further confirmed in the amplitude spectrum dis-
played in Fig. 3.15(d); the pedestal on which the line frequency component at 0.05
Hz sits is due to the transient effects just described.

3.4 Costas Receiver

Coherent detection of a DSB-SC modulated wave requires that the locally generated car-
rier in the receiver be synchronous in both frequency and phase with the oscillator respon-
sible for generating the carrier in the transmitter. This is a rather demanding requirement,
all the more so since the carrier is suppressed from the transmitted DSB-SC signal. One
method of satisfying this requirement is to use the Costas receiver shown in Fig. 3.16. This
receiver consists of two coherent detectors supplied with the same input signal—namely,
the incoming DSB-SC wave A, cos(27f.#)m(t), but with two local oscillator signals that are
in phase quadrature with respect to each other. The frequency of the local oscillator is
adjusted to be the same as the carrier frequency f; it is assumed known a priori. This
assumption is reasonable since the system designer has access to the detailed specifications
of both the transmitter and receiver. The detector in the upper path is referred to as the in-
phase coherent detector or I-channel, and the detector in the lower path is referred to as

I-channel
1
~ A, cos¢ m(t)
Product Low-pass 2 Demodulated
modulator filter signal
cos2mf t + )
Voltage-controlled Phase
oscillator discriminator
DSB-SC wave
A cosQaf.t)m(t)
-90°
phase-shifter
sinQaf £ + ¢p)
Product Low—pass
modulator filter 1
3 A_sing m(t)
O-channel

FIGURE 3.16 Costas receiver for the demodulation of a DSB-SC modulated wave.
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the quadrature-phase coherent detector or Q-channel. These two detectors are coupled
together to form a negative feedback system designed in such a way as to maintain the
local oscillator in synchronism with the carrier wave.

To understand the operation of this receiver, suppose that the local oscillator signal
is of the same phase as the carrier wave A, cos(2f.t) used to generate the incoming DSB-
SC wave. Under these conditions, we find that the I-channel output contains the desired
demodulated signal #1(t), whereas the Q-channel output is zero due to the quadrature null
effect of the O-channel. Next suppose that the local oscillator phase drifts from its proper
value by a small angle ¢ radians. From the discussion on coherent detection in Section 3.3
we know that the I-channel output is proportional to cos ¢ and cos ¢ = 1 for small ¢;
hence, the I-channel output remains essentially unchanged so long as ¢ is small. But there
will now be some signal, albeit small, appearing at the O-channel output, which is pro-
portional to sin ¢ = ¢ for small ¢. This O-channel output will have the same polarity as
the I-channel output for one direction of local oscillator phase drift ¢ and the opposite
polarity for the opposite direction of ¢. Thus, by combining the I- and O-channel outputs
in a phase discriminator (which consists of a multiplier followed by a time-averaging unit),
a dc control signal proportional to the phase drift ¢ is generated. With negative feedback
acting around the Costas receiver, the control signal tends to automatically correct for the
local phase error ¢ in the voltage-controlled oscillator.

It is apparent that phase control in the Costas receiver ceases with modulation, which
means that phase-lock would have to be re-established with the reappearance of modula-
tion. This is not a serious problem, because the lock-up process normally occurs so rapidly
that no distortion is perceptible.

» Drill Problem 3.8 Asjust mentioned, the phase discriminators in the Costas receiver of
Fig. 3.16 consist of a multiplier followed by a time-averaging unit. Referring to this figure, do
the following;:
(a) Assuming that the phase error ¢ is small compared to one radian, show that the output
g(t) of the multiplier component is approximately %(ﬁmz(t).
(b) Furthermore, passing g(¢) through the time-averaging unit defined by

3T _Tg(t)dt

where the averaging interval 2T is long enough compared to the reciprocal of the band-
width of g(#), show that the output of the phase discriminator is proportional to the
phase-error ¢ multiplied by the dc (direct current) component of 7% (t). The amplitude of
this signal (acting as the control signal applied to the voltage-controlled oscillator in Fig.
3.16) will therefore always have the same algebraic sign as that of the phase error ¢,
which is how it should be. <

3.5 Quadrature-Carrier Multiplexing

The quadrature null effect of the coherent detector may also be put to good use in the con-
struction of the so-called quadrature-carrier multiplexing or quadrature-amplitude modu-
lation (QAM). This scheme enables two DSB-SC modulated waves (resulting from the
application of two physically independent message signals) to occupy the same channel
bandwidth. Yet it allows for the separation of the two message signals at the receiver out-
put. Quadrature-carrier multiplexer is therefore a bandwidth-conservation system.

A block diagram of this system is shown in Fig. 3.17. The transmitter part of the sys-
tem, shown in Fig. 3.17(a), involves the use of two separate product modulators that are
supplied with two carrier waves of the same frequency but differing in phase by
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FIGURE 3.17 Quadrature-carrier multiplexing system: (@) Transmitter, (b) receiver.

—90 degrees. The transmitted signal s(¢) consists of the sum of these two product modu-
lator outputs, as shown by

s(t) = Aomq(¢) cos(2af.t) + A.my(t) sin(2wf.¢) (3.12)

where m1(¢) and m,(¢) denote the two different message signals applied to the product
modulators. The multiplexed signal s(¢) occupies a channel bandwidth of 2W centered on
the carrier frequency f., where W is the message bandwidth, assumed to be common to both
m1(t) and m,(t). According to Eq. (3.12), we may view A.m1(t) as the in-phase compo-
nent of the multiplexed band-pass signal s(¢) and —A.m,(#) as its quadrature component.

The receiver part of the system is shown in Fig. 3.17(b). Specifically, the multiplexed
signal s(#) is applied simultaneously to two separate coherent detectors that are supplied
with two local carriers of the same frequency, but differing in phase by —90 degrees.

The output of the top detector is %ACA’le(t), whereas the output of the bottom detector
is %ACA’sz(t). For the system to operate satisfactorily, it is important to maintain the

correct phase and frequency relationships between the oscillator used to generate the car-
riers in the transmitter and the corresponding local oscillator used in the receiver.
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To maintain this synchronization, we may use a Costas receiver described in Section
3.4. Another commonly used method is to send a pilot signal outside the passband of the
modulated signal. In the latter method, the pilot signal typically consists of a low-power
sinusoidal tone whose frequency and phase are related to the carrier wave c(t) = A.(27f.t).
At the receiver, the pilot signal is extracted by means of a suitably tuned circuit and then
translated to the correct frequency for use in the coherent detector.

» Drill Problem 3.9 Verify that the outputs of the receiver in Fig. 3.17(b) are as indicated
in the figure, assuming perfect synchronism between the receiver and transmitter. <

3.6 Single-Sideband Modulation

In suppressing the carrier, DSB-SC modulation takes care of a major limitation of AM that
pertains to the wastage of transmitted power. To take care of the other major limitation of
AM that pertains to channel bandwidth, we need to suppress one of the two sidebands in
the DSB-SC modulated wave. This modification of DSB-SC modulation is precisely what
is done in single sideband (SSB) modulation. In effect, SSB modulation relies solely on the
lower sideband or upper sideband to transmit the message signal across a communication
channel. Depending on which particular sideband is actually transmitted, we speak of
lower SSB or upper SSB modulation.

THEORY

A rigorous derivation of SSB modulation theory that applies to an arbitrary message sig-
nal is rather demanding and therefore beyond the scope of this book. To simplify matters,
we will take an approach different from that used in Section 3.1 on AM and Section 3.3
on DSB-SC. Specifically, we start the study of SSB modulation by first considering the sim-
ple case of a sinusoidal modulating wave, and then we generalize the results to an arbitrary
modulating signal in a step-by-step manner.

To proceed then, consider a DSB-SC modulator using the sinusoidal modulating wave

m(t) = A,, cos(27f,,t)
With the carrier ¢(¢) = A, cos(2mf.t), the resulting DSB-SC modulated wave is defined by

Spsp(2) = c(t)m(t)
= A/A,, cos(27f,t) cos(2nf,,t)

= %ACAM cos[2m(f. + fn)t] + %ACAm cos[2m(f, — fn)t] (3.13)

which is characterized by two side-frequencies, one at f, + f,, and the other at f, — f,,.
Suppose that we would like to generate a sinusoidal SSB modulated wave that retains the
upper side-frequency at /. + f,,. Then, suppressing the second term in Eq. (3.13), we may
express the upper SSB modulated wave as

1
SUSSB(t) = EAcAm COS[ZW(][C + fm)t] (314)
The cosine term in Eq. (3.14) includes the sum of two angles—namely, 27/t and 27f,,z.

Therefore, expanding the cosine term in Eq. (3.14) using a well-known trigonometric
identity, we have

1
Sussg(2) = %ACA,” cos(2mwf ) cos(2mf,,t) — EAcAm sin(27f ) sin(27f,,t)  (3.15)
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If, on the other hand, we were to retain the lower side-frequency at f, — f,, in the DSB-SC
modulated wave of Eq. (3.13), then we would have a lower SSB modulated wave defined by

Sissp(?) = %ACA,,, cos(2mrf.t) cos(2mf,t) + %ACAM sin(2wf ) sin(27wf,,t)  (3.16)

Examining Eqs. (3.15) and (3.16), we see that they differ from each other in only one
respect: the minus sign in Eq. (3.15) is replaced with the plus sign in Eq. (3.16). Accord-
ingly, we may combine these two equations and thereby define a sinusoidal SSB modu-
lated wave as follows:

1 1
Sssp(t) = EAcAm cos(2mf.t) cos(2mf,,t) F EAcAm sin(2wf,t) sin(2f,,t) (3.17)

where the plus sign applies to lower SSB and the minus sign applies to upper SSB.

With the generalization of Eq. (3.17) as the goal, we next proceed in two stages. In
stage 1, we let the message signal be periodic; and in stage 2, we let it be nonperiodic. Con-
sider then a periodic message signal defined by the Fourier series

m(t) = > a, cos(2mf,t) (3.18)

which consists of a mixture of sinusoidal waves with harmonically related frequencies.
Recognizing that the carrier ¢(#) is common to all the sinusoidal components of m(z), we
may therefore immediately infer from Eq. (3.17) the expression

Sssp(t) = %AC cos(2mf.t) D, a, cos(2mf,t) F %AC sin(2wft) > a, sin(27f,t) (3.19)

as the corresponding formula for the SSB modulated wave.
Next, let us consider another periodic signal defined by the Fourier series

m(t) = S a, sin(2af,t) (3.20)

which is of a form similar to that of Eq. (3.18) except for the fact that the cosine term
cos(2mf.t) is replaced by the sine term sin(27f.¢). Then, in light of the definitions in Egs.
(3.19) and (3.20), we may reformulate the SSB modulated wave of Eq. (3.17) as

Sssp(t) = %m(t) cos(2mf.t) F %n%(t) sin(27f,t) (3.21)

Comparing Eq. (3.20) with Eq. (3.18), we observe that the periodic signal 72(¢) can be
derived from the periodic modulating signal #:(#) simply by shifting the phase of each
cosine term in Eq. (3.18) by —90°.

In both technical and practical terms, the observation we have just made is very
important for two reasons:

1. We know from Fourier analysis that under appropriate conditions, the Fourier series
representation of a periodic signal converges to the Fourier transform of a nonperi-
odic signal; see Appendix 2 for details.

2. The signal m(t) is the Hilbert transform of the signal m(t). Basically, a Hilbert trans-
former is a system whose transfer function is defined by

H(f) = —jsgn(f) (3.22)

where sgn(f) is the signum function; for the definition of the signum function see
Section 2.4. In words, the Hilbert transformer is a wide-band phase-shifter whose
frequency response is characterized in two parts as follows (see Problem 2.52):

The magnitude response is unity for all frequencies, both positive and negative.
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The phase response is +90° for negative frequencies and —90° for positive
frequencies.

Equipped analytically in the manner described under points 1 and 2, we may finally gen-
eralize Eq. (3.21) as the formula for a single-sideband modulated wave produced by a mes-
sage signal, regardless of whether it is periodic or nonperiodic. Specifically, given a Fourier
transformable message signal 71(¢) with its Hilbert transform denoted by #1(z), the SSB
modulated wave produced by m(¢) is defined by

A, A :
s(t) = ?m(t) cos(2mf.t) F ?m(t) sin(27f,t) (3.23)

where A, cos(27f.t) is the carrier, A, sin(27f,2) is its —90° phase-shifted version; the plus
and minus signs apply to the lower SSB and upper SSB, respectively. In Eq. (3.23), we have
omitted the use of SSB as a subscript for s(#), with it being understood that this equation
refers to SSB modulation in its most generic form.

» Drill Problem 3.10 Using Egs. (3.22) and (3.23), show that for positive frequencies the
spectra of the two kinds of SSB modulated waves are defined as follows:

(a) For the upper SSB,

A,
TM(][_ fc)s for fZ fc
0, for0 < f=f

S(F) = (3.24)

(b) For the lower SSB,
0, for f>f.

_ (3.25)
SO =N 2omir—f), foro<r=f.

» Drill Problem 3.11 Show that if the message signal m2(#) is low-pass, then the Hilbert
transform #1(¢) is also low-pass with exactly the same bandwidth as m2(¢). <

The two spectral formulas defined in parts (a) and (b) of Problem 3.10 are intuitively
satisfying. In particular, they are both in perfect accord with the two pictures displayed in
parts (b) and (c) of Fig. 3.18, respectively. Figure 3.18(b) describes an SSB modulated wave
that has retained the upper sideband, whereas Fig. 3.18(c) describes the other kind of SSB
modulation that has retained the lower sideband. From a practical perspective, the only issue
that distinguishes one kind of SSB modulation from the other is that of bandwidth
occupancy.

MODULATORS FOR SSB

In light of the theory presented in this section, we may develop two methods for generat-
ing SSB-modulated waves, as described next.

Frequency Discrimination Method

One straightforward method for SSB generation, called the frequency discrimination
method, is depicted in Fig. 3.19; this discriminator follows directly from Egs. (3.24) and
(3.25) presented in Problem 3.10. The SSB modulator of Fig. 3.19 consists of two compo-
nents: product modulator followed by band-pass filter. The product modulator produces
a DSB-SC modulated wave with an upper sideband and a lower sideband. The band-pass
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FIGURE 3.18 (a) Spectrum of a message signal m(t) with energy gap centered around zero
frequency. Corresponding spectra of SSB-modulated waves using (b) upper sideband, and
(¢) lower sideband. In parts (b) and (c), the spectra are only shown for positive frequencies.

filter is designed to transmit one of these two sidebands, depending on whether the upper
SSB or lower SSB is the desired modulation. For the design of the band-pass filter to be prac-
tically feasible, there must be a certain separation between the two sidebands that is wide
enough to accommodate the transition band of the band-pass filter. This separation is equal
to 2f,, where [, is the lowest frequency component of the message signal, as illustrated in
Fig. 3.18. This requirement limits the applicability of SSB modulation to speech signals for

Message SSB-Modulated
. Product Band-pass )
signal 71(t) — . —> wave s(f)
modulator filter
A, cos(2mf 1)

carrier wave

FIGURE 3.19 Frequency-discrimination scheme for the generation
of a SSB modulated wave.
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which £, = 100 Hz, but rules it out for video signals and computer data whose spectral con-
tent extends down to almost zero frequency.

Phase Discrimination Method

The second method for SSB generation, called the phase discrimination method, is
depicted in Fig. 3.20; its implementation follows from the time-domain description of SSB
waves defined in Eq. (3.23). This second SSB modulator consists of two parallel paths, one called
the in-phase path and the other called the quadrature path. Each path involves a product mod-
ulator. The sinusoidal carrier waves applied to the two product modulators are in phase-
quadrature, which is taken care of by simply using a —90° phase-shifter as shown in Fig. 3.20.
However, the one functional block in Fig. 3.20 that requires special attention is the wide-band
phase-shifter, which is designed to produce the Hilbert transform 71(t) in response to the
incoming message signal 72(¢). The role of the quadrature path embodying the wide-band
phase shifter is merely to interfere with the in-phase path so as to eliminate power in one of
the two sidebands, depending on whether upper SSB or lower SSB is the requirement.

The two modulators of Figs. 3.19 and 3.20 are clearly quite different in their struc-
tures. In terms of design challenge, the band-pass filter in the frequency discriminator of
Fig. 3.19 stands out as the functional block that requires special attention. On the other
hand, in the phase discriminator of Fig. 3.20, it is the wide-band phase shifter that requires
special attention.

COHERENT DETECTION OF SSB

The demodulation of DSB-SC is complicated by the suppression of the carrier in the trans-
mitted signal. To make up for the absence of the carrier in the received signal, the receiver
resorts to the use of coberent detection, which requires synchronization of a local oscilla-
tor in the receiver with the oscillator responsible for generating the carrier in the trans-
mitter. The synchronization requirement has to be in both phase and frequency. Although
the carrier is suppressed, information on the carrier phase and frequency is embedded into
the sidebands of the modulated wave, which is exploited in the receiver. However, the
demodulation of SSB is further complicated by the additional suppression of the upper or
lower sideband. In actuality, however, the two sidebands share an important property: they

M .,
S‘;S;z%e Eiedluet + s SSB-Modulated
£ modulator wave s(t)
m(t) T
cos (27f, 1)
Oscillator
m(t)
Wideband -90°
phase-shifter phase-shifter
sin(27f, 1)
(1) Product
modulator

FIGURE 3.20 Phase discrimination method for generating a SSB-modulated wave.
Note: The plus sign at the summing junction pertains to transmission of the lower sideband
and the minus sign pertains to transmission of the upper sideband.
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are the images of each other with respect to the carrier. Here again, coherent detection
comes to the rescue of SSB demodulation.

The coherent detector of Fig. 3.12 applies equally well to the demodulation of both
DSB-SC and SSB; the only difference between these two applications is how the modulated
wave s(¢) is defined.

» Drill Problem 3.12 For the low-pass filter in Fig. 3.12 (assuming perfect synchronism)
to suppress the undesired SSB wave, the following condition must be satisfied

> W, f. = carrier frequency, and W = message bandwidth
Justify this condition. <
» Drill Problem 3.13 Starting with Eq. (3.23) for a SSB modulated wave, show that the

output produced by the coherent detector of Fig. 3.12 in response to this modulated wave is

defined by

AA,
“m(n)

vo(t) =

Assume that the phase error ¢ = 0 in Fig. 3.12. <

FREQUENCY TRANSLATION

The basic operation performed in single sideband modulation is in fact a form of frequency
translation, which is why single sideband modulation is sometimes referred to as frequency
changing, mixing, or heterodyning.

The idea of single sideband modulation has thus far been presented in the context of
a raw message signal. This idea may be generalized to encompass frequency translation as
follows. Suppose that we have a modulated wave s;(#) whose spectrum is centered on a car-
rier frequency f;, and the requirement is to translate it upward or downward in frequency,
such that the carrier frequency is changed from f; to a new value f,. This requirement is
accomplished by using a mixer. As depicted in Fig. 3.21, the mixer is a functional block
that consists of a product modulator followed by a band-pass filter, as it is in a conventional
SSB modulator but with an important difference: the band-pass filter is now straightfor-
ward to design, as explained in what follows.

Specifically, to explain the action of the mixer, consider the spectral situation depicted
in Fig. 3.22(a), where, for the purpose of illustration, it is assumed that the mixer input s; ()
is a wave with carrier frequency f; and bandwidth 2W. Figure 3.21(b) displays the spec-
trum S'(f) of the resulting signal s’(#) produced at the output of the product modulator in
Fig. 3.21.

The signal s’ (#) may be viewed as the sum of two modulated components: one com-
ponent represented by the shaded spectrum in Fig. 3.22(b), and the other component rep-
resented by the unshaded spectrum in this figure. Depending on whether the incoming

Modulated wave s;(z) Product s'(0) Band-pass > Modulated wave s,(2)
with carrier frequency f, modulator filter with carrier frequency f,

|

A, cos 2mfit)

FIGURE 3.21 Block diagram of mixer.
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FIGURE 3.22 (a) Spectrum of modulated signal s;() at the mixer input. (b) Spectrum of
the corresponding signal s'(#) at the output of the product modulator in the mixer.

carrier frequency f; is to be translated upward of downward, we may now identify two
different situations:

(1) Up conversion. In this form of mixing, the translated carrier frequency, denoted by
£, is greater than the incoming carrier frequency f;. The required local oscillator
frequency f; is therefore defined by

h=h+h
Solving for f;, we therefore have

fi=fh-h
In this situation, the unshaded part of the spectrum in Fig. 3.22(b) defines the up-
converted signal s,(2), and the shaded part of this spectrum defines the image signal
associated with s,(¢), which is removed by the band-pass filter in Fig. 3.21. For obvi-
ous reasons, the mixer in this case is referred to as a frequency-up converter.

(i1) Down conversion. In this second form of mixing, the translated carrier frequency f>
is smaller than the incoming carrier frequency f;, as shown by

h=fi~f
The required local oscillator frequency is therefore
fi=hi -

The picture we have this time is the reverse of that pertaining to up conversion. In par-
ticular, the shaded part of the spectrum in Fig. 3.22(b) defines the down-converted
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signal s,(#), and the unshaded part of this spectrum defines the associated image sig-
nal. Accordingly, this second mixer is referred to as a frequency-down converter. Note
that in this case, the translated carrier frequency f, has to be larger than W (i.e., one half
of the bandwidth of the incoming modulated signal s,(2)) to avoid sideband overlap.

The purpose of the band-pass filter in the mixer of Fig. 3.21 is now clear: pass the sig-
nal s,(¢) and eliminate the associated image signal. This objective is achieved by aligning
the midband frequency of the filter with the translated carrier frequency f, and assigning
it a bandwidth equal to that of the incoming modulated signal s;(#). Regardless of whether
the frequency conversion is up or down, the transition band of the filter is permitted to
occupy the gap from f; — f; + Wtof; + f; — W; that is, the permissible width of the tran-
sition band is 2(f; — W), which, in effect, requires that the local oscillator frequency f; be
greater than W. Moreover, to avoid spectoral overlap in down conversion, we also require
that f; — f; — W be greater than zero; that is, f; > f; — W.

It is important to note that mixing is a linear operation. Accordingly, the relation of
the sidebands of the incoming modulated wave to the original carrier existing at the mixer
input is completely preserved at the mixer output.

3.7 Vestigial Sideband Modulation

MOTIVATION

Single-sideband modulation works satisfactorily for an information-bearing signal (e.g.,
speech signal) with an energy gap centered around zero frequency. However, for the spec-
trally efficient transmission of wideband signals, we have to look to a new method of mod-
ulation for two reasons:

1. Typically, the spectra of wideband signals (exemplified by television video signals and
computer data) contain significant low frequencies, which make it impractical to use
SSB modulation.

2. The spectral characteristics of wideband data befit the use of DSB-SC. However, DSB-
SC requires a transmission bandwidth equal to twice the message bandwidth, which
violates the bandwidth conservation requirement.

To overcome these two practical limitations, we need a compromise method of modulation
that lies somewhere between SSB and DSB-SC in its spectral characteristics. Vestigial side-
band, the remaining modulation scheme to be considered in this section, is that compro-
mise scheme.

Vestigial sideband (VSB) modulation distinguishes itself from SSB modulation in two
practical respects:

1. Instead of completely removing a sideband, a trace or vestige of that sideband is
transmitted; hence, the name “vestigial sideband.”

2. Instead of transmitting the other sideband in full, almost the whole of this second band
is also transmitted.

Accordingly, the transmission bandwidth of a VSB modulated signal is defined by
BT = f;, + W
where f, is the vestige bandwidih and W is the message bandwidth. Typically, f, is 25

percent of W, which means that the VSB bandwidth By lies between the SSB bandwidth,
W, and DSB-SC bandwidth, 2W.
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Message Product VSB-shaping VSB-Modulated
signal () ———  — filter: —>  wave s(9)
modulator H(f)

|

Carrier wave
A, cos(2mf 1)

FIGURE 3.23 VSB modulator using frequency discrimination.

SIDEBAND SHAPING FILTER

To produce VSB modulation, we may use the modulator depicted in Fig. 3.23, which con-
sists of a product modulator followed by a band-pass filter. For VSB modulation, the band-
pass filter is referred to as a sideband shaping filter. Assuming that the vestige of the VSB
lies in the lower sideband of the DSB-SC modulated wave, the VSB spectrum at the mod-
ulator output is shaped in a manner depicted in Fig. 3.24(a). The spectrum shaping is
defined by the transfer function of the filter, which is denoted by H(f). The only require-
ment that the sideband shaping performed by H(f) must satisfy is that the transmitted ves-
tige compensates for the spectral portion missing from the other sideband. This requirement
ensures that coherent detection of the VSB modulated wave recovers a replica of the mes-
sage signal, except for amplitude scaling.

By imposing this requirement on the VSB demodulation process, it turns out that the
sideband shaping filter must itself satisfy the following condition:

Hf+f)+H(f-f)=1, for-W=f=W (3.26)

where f, is the carrier frequency. The term H(f + f.) is the positive-frequency part of the
band-pass transfer function H(f) shifted to the left by £, and H(f — f,) is the negative-
frequency part of H(f) shifted to the right by f.. A proof of Eq. (3.26) dealing with an
arbitrary Fourier transformable message signal is presented later in this section on the
coherent detection of VSB.

Two properties of the sideband shaping filter follow from Eq. (3.26):

1. The transfer function of the sideband shaping filter exhibits odd symmetry about the
carrier frequency f.. To explain this property, we first express H(f) as the difference
between two frequency-shifted functions as follows:

H(f) =u(f—f) = H(f— f), forfe—f,<|fl<f+ W (3.27)

The first term u(f — f.) denotes the frequency-shifted version of the unit-step fre-
quency function u(f), which is depicted in Fig. 3.24(b). That is,

)1, forf>0
uf) = {o, for f< 0 (3-28)

The second term H,(f — f.) denotes the frequency-shifted version of a new low-pass
transfer function H,(f), which, as depicted in Fig. 3.24(c), is completely determined
by the vestige of the modulated wave s(¢). The relationship defined in Eq. (3.27) fol-
lows readily from the three example parts of Fig. 3.24. The important point to note
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H(f)
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©

FIGURE 3.24 (a) Amplitude response of sideband-shaping filter; only the positive-
frequency portion is shown, the dashed part of the amplitude response is arbitrary.
(b) Unit-step function defined in the frequency domain. (¢) Low-pass transfer

function H,(f).

from part (c) of the figure is that H,(f) satisfies the property of odd symmetry about

zero frequency, as shown by

HV(_f) = _HV<][)

It is therefore in this sense that Property 1 is stated.
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2. The transfer function H,(f) is required to satisfy the condition of Eq. (3.26) only for
the frequency interval —W < [ = W, where W is the message bandwidth. The prac-
tical implication of this second property is that, for the case of VSB depicted in
Fig. 3.24(a), the transfer function of the sideband shaping filter can have an arbi-
trary specification for |f| > £. + W; it is for this reason that the part of the spectrum
lying above f, + W is shown dashed in Fig. 3.24(a).

ExAamMPLE 3.3 Sinusoidal VSB

Consider the simple example of sinusoidal VSB modulation produced by the sinusoidal mod-
ulating wave

m(t) = A,, cos(2mf,,t)
and carrier wave

c(t) = A, cos(2mf.t)

Let the upper side-frequency at /. + f,,, as well as its image at —(f. + f,,) be attenuated by the
factor k. To satisfy the condition of Eq. (3.26), the lower side-frequency at f, — f,, and its
image —(f. — f,,) must be attenuated by the factor (1 — k). The VSB spectrum is therefore

8(f) = %kAcAm[S(f* (fe + fm)) + 8(F + (fe + fm)]
2 (1= RAAS( = (= f)) + 8(F + (e = )]
Correspondingly, the sinusoidal VSB modulated wave is defined by

5(t) = RAALexp(2m(fe + fu)t) + exp(—2(f. + f)0)]
+2(1 = R)AALexp(2m(fe = fu)t) + exp(~2m(f, = fu)1)]
= %kACAm cos(2m(f. + fn)t) + %(1 — k)A.A,, cos(2m(f. — fn)t) (3.30)

Using well-known trigonometric identities to expand the cosine terms cos(27(f. + f,,)t) and
cos(2m(f. — f,.)t), we may reformulate Eq. (3.30) as the linear combination of two sinusoidal
DSB-SC modulated waves.

s(t) = %ACA,,, cos(2mf,t) cos(27f,,t)
+%A6Am(l — 2k) sin((27f.t) sin(27f,,t)) (3.31)

where the first term on the right-hand side is the in-phase component of s(z) and the second
term is the quadrature component.
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To summarize, depending on how the attenuation factor k in Eq. (3.31) is defined in
the interval (0, 1), we may identify all the different sinusoidal forms of linear modulated
waves studied in Sections 3.3, 3.6, and 3.7 as follows:

1. k= %, for which s(z) reduces to DSB-SC
2. k = 0, for which s(#) reduces to lower SSB
k = 1, for which s(#) reduces to upper SSB

1
3.0<k < 5 for which the attenuated version of the upper side-frequency defines the

vestige of s(z)

> < k < 1, for which the attenuated version of the lower side frequency defines the

vestige of s(2)

COHERENT DETECTION OF VSB

For an exact recovery of the message signal 72(¢) from the VSB modulated wave s(z), except
for some amplitude scaling, we may use the coberent detector shown in Fig. 3.12. As with
the DSB-SC and SSB demodulations studied previously, the demodulation of VSB consists
of multiplying s(#) with a locally generated sinusoid and then low-pass filtering the result-
ing product signal »(¢). It is assumed that the local sinusoid in the coherent detector of
Fig. 3.12 is in perfect synchronism with the carrier in the modulator responsible for gen-
erating the VSB-modulated wave. Then setting the phase ¢ in the local sinusoid in Fig. 3.12
equal to zero, we express the Fourier transform of the product signal

v(t) = Als(z) cos(2mf.t)
as follows

V() = SAUS( ) + S(F+ £)] (3.32)

where

s(t) == S(f)

Next, we express the Fourier transform of the VSB modulated wave s(¢) as

1
S(f) = S AIM(f = fo) + M(f + 1) JH(f) (3.33)
which follows from Fig. 3.23 depicting the VSB modulator; M(f) is the message spectrum

and H(f) is the transfer function of the sideband shaping filter. Shifting the VSB spectrum
S(f) to the right by £, yields

S(f = ) = AL = 26) + M(P)IH( = £) (334)

and shifting it to the left by £, yields

S+ ) = AIM() + MU+ 2)H( + £) (3.35)
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Hence, substituting Egs. (3.34) and (3.35) into Eq. (3.32) and then combining terms, we
obtain

1

V() = ZAAMNIA — fo) + Hf + [o)]

LALLM = 2)H(F ~ £) + MU+ 26)H(F + £)]

which, in light of the condition imposed on H(f) in Eq. (3.26), reduces to

V() = AAM()

1

+ 3 AALM(f = 2f)H(f = fo) + M(f + 2f)H(f + [.)] (3.36)
The first term on the right-hand side of Eq. (3.36) is a scaled version of the message spec-
trum M(f). The second term of Eq. (3.36) is the Fourier transform of high-frequency com-
ponents, representing a new VSB wave modulated onto a carrier of frequency 2f.. Provided
that the low-pass filter in the coherent detector of Fig. 3.12 has a cutoff frequency just
slightly greater than the message bandwidth, the high-frequency components of v(#) are
removed by the low-pass filter. The resulting demodulated signal is a scaled version of the
desired message signal m(¢).

» Drill Problem 3.14 Validate the statement that the high-frequency components in
Eq. (3.36) represent a VSB wave modulated onto a carrier of frequency 2f.. <

EXAMPLE 3.4 Coherent detection of sinusoidal VSB
Recall from Eq. (3.31) of Example 3.3, that the sinusoidal VSB modulated signal is defined by

s(t) = %ACA,,, cos(2f,,t) cos(2mf.t)

+%ACA,,,(] — 2k) sin(27f.t) sin(27f,,t)

Multiplying s(¢) by Al cos(2mf.t) in accordance with perfect coherent detection yields the
product signal

v(t) = Als(t) cos(2mf.t)

1
= EACA::Am cos(2mf,,t) cos*(2mf.t)

+%ACA;AM(1 — ) Sl e els) s Par)

Next, using the trigonometric identities

cos’(2mf.t) = %[1 + cos(4mf.t)]
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and

sin(2mf.t) cos(2mf.t) = %sin(47'rf,:t)
we may redefine v(¢) as

1
v(t) = ZACAgAm cos(27f;t)

+%ACA;Am[cos(27Tfmt) cos(d4mft) + (1 — 2k) sin(2mft) sin(4mft)] (3.37)

The first term on the right-hand side of Eq. (3.37) is a scaled version of the message signal
A, cos(2arf,,t). The second term of the equation is a new sinusoidal VSB wave modulated
onto a carrier of frequency 2f., which represents the high-frequency components of »(z). This
second term is removed by the low-pass filter in the detector of Fig. 3.12, provided that the cut-
off frequency of the filter is just slightly greater than the message frequency f,,,.

EXAMPLE 3.5 Envelope detection of VSB plus carrier

The coherent detection of VSB requires synchronism of the receiver to the transmitter, which
increases system complexity. To simplify the demodulation process, we may purposely add the
carrier to the VSB signal (scaled by the factor k,) prior to transmission and then use envelope

detection in the receiver.> Assuming sinusoidal modulation, the “VSB-plus-carrier” signal is
defined [see Eq. (3.31) of Example 3.3) as

svsp+c(t) = A. cos(2mf.t) + kys(t), k, = amplitude sensitivity factor
k
= A, cos(27f.t) + fACAm cos(27f,,t) cos(2mf.t)
kg . .
+?A5Am(l — 2k) sin(2m7f,,t) sin(2m7f.t)
kg
=Al1+ ?Am cos(2mf,t) | cos(2mf.t)
kg . .
+?A5Am(l — 2k) sin(2m7f,,t) sin(27f.t)

The envelope of sysp+ () is therefore

» k 2 2 k 2)1/2
a(t) = {Ac[l + E“Am cos(Zmet)} + AC[;Am(l — 2k) sin(Zﬂfmt)j| }

b 2)1/2
X T“Am(l — 2k) sin(27f,,t)
= Ac[l + ?”Am cos(Zmet)j| 1+ 2 (3.38)
1+ ?aAmcos(Zﬂ'fmt)

3 Another procedure used for the detection of a VSB modulated wave is to add a pilot to the modulated wave at
the transmitter. The pilot would be a frequency-translated version of the carrier used in the generation of the
modulated wave, but it lies outside the band of frequencies occupied by the modulated wave. At the receiver, the
pilot is extracted by means of a band-pass filter and then translated (upward or downward) to produce a replica
of the original carrier. With this replica of the carrier available to the receiver, coherent detection may be used to
recover the original message signal.

A similar procedure can be used for the coherent detection of SSB modulated waves.
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Equation (3.38) shows that distortion in the envelope detection performed on the envelope
a(t) is contributed by the quadrature component of the sinusoidal VSB signal. This distortion
can be reduced by using a combination of two methods:

The amplitude sensitivity factor k, is reduced, which has the effect of reducing the per-
centage modulation.

The width of the vestigial sideband is reduced, which has the effect of reducing the fac-
tor (1 — 2k).

Both of these methods are intuitively satisfying in light of what we see inside the square brack-
ets in Eq. (3.38).

3.8 Baseband Representation of Modulated
Waves and Band-Pass Filters

From the discussion of different modulation strategies presented in this chapter, we see
that a modulated wave using a sinusoidal wave as the carrier is actually a band-pass sig-
nal centered on the carrier frequency. By virtue of this very fact, the carrier wave imprints
itself into the structure of the modulated wave. In an explicit sense, it does so when the car-
rier wave is contained as a separate component in the transmitted signal. When the carrier
wave is suppressed, it makes its presence known to the receiver in an implicit sense by posi-
tioning the sidebands of the transmitted spectrum around the carrier frequency in one form
or another, depending on the type of modulation used.

Typically, the carrier frequency is large compared to the message bandwidth, which
makes the processing of a modulated wave on a digital computer a difficult proposition.
However, from the modulation theory presented in this chapter, we do know that all the
information content of a message signal resides completely in the sidebands of the modu-
lated wave. Accordingly, when the objective is to process a modulated wave on a com-
puter, the efficient procedure is to do the processing on the baseband version of the
modulated wave rather than directly on the modulated wave itself. The term “baseband”
is used to designate the band of frequencies representing the original signal as delivered by
a source of information.

BASEBAND REPRESENTATION OF MODULATED WAVES
Consider then a generic, linear modulated wave, which is defined by
s(t) = si(t) cos(2mf.t) — sp(t) sin(27f.t) (3.39)
Let
c(t) = cos(2wf.t)
be the carrier wave with frequency f,, and
c(t) = sin(2wf.t)

be the quadrature-phase version of the carrier. To simplify matters, without loss of gener-
ality we have set the carrier amplitude equal to unity. We now express the modulated wave
in the compact form

s(t) = si(t)c(t) — so(t)c(t) (3.40)
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The term s;(t) is called the in-phase component of the modulated wave s(¢), so called
because it is multiplied by the carrier ¢(z). By the same token, the term sp(z) is called the
quadrature-phase component or simply the quadrature component of s(¢), so called because
it is multiplied by the quadrature carrier ¢(¢). The carriers ¢(¢) and ¢(¢) are orthogonal to
each other.

Equation (3.39) or (3.40) is itself referred to as the canonical representation of lin-
ear modulated waves. Most important, this representation includes all the members of the
amplitude modulation family discussed in this chapter, as shown in Table 3.1.

From this table, it is clearly apparent that the information content of the message
signal 71(t) and the way in which the modulation strategy is implemented are fully described
by the in-phase component s;(¢) in both AM and DSB-SC, or in the combination of the in-
phase component s;(¢) and the quadrature component sp(z) in both SSB and VSB. More-
over, the orthogonality of s;(¢) and sp () with respect to each other prompts us to introduce
a new signal called the complex envelope of the modulated wave s(z), which is formally

defined by
S(t) = si(t) + jso(t) (3.41)

This definition is motivated by the way in which we deal with complex numbers. In any
event, the important point to take from Eq. (3.41) is the fact that the complex envelope 5(¢)
accounts fully for the information contents of both s;(¢) and sp(¢). Note, however, that the
complex envelope $(2) is a fictitious signal, the use of which is intended merely to simplify
signal processing operations on band-pass signals, which are exemplified by modulated
waves based on a sinusoidal carrier.

In a manner corresponding to Eq. (3.41), we may define the complex carrier wave

2(¥)

c(t) + je(t)

= cos(2mf.t) + jsin(2wf.t)

exp(j27f,t) (3.42)
Accordingly, the modulated wave s(t) is itself defined by

s() = Re[5(2)€(1)]
= Re[$(2) exp(j2mf.t)] (3.43)

where Re[ - | extracts the real part of the complex quantity enclosed inside the square
brackets.

Now we can see the practical advantage of the complex envelope 5(¢) over the real-
valued modulated wave s(t):

1. The highest frequency component of s(¢) may be as large as /. + W, where [, is the
carrier frequency and W is the message bandwidth.

2. On the other hand, the highest frequency component of 5(¢) is considerably smaller,
being limited by the message bandwidth W.

Yet, in using Eq. (3.43) as the representation of the modulated wave s(¢), there is nothing
lost whatsoever.

Given an arbitrary modulated wave s(#), we may derive the in-phase compound s(t)
and quadrature component sg(¢) using the scheme shown in Fig. 3.25(a). Conversely, given
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TABLE 3.1 Different Forms of Linear Modulation as Special Cases

of Eq. (3.39), assuming unit carrier amplitude

In-phase Quadrature
component component
Type of modulation si(2) so(2) Comments
AM 1+ k,m(t) 0 k, = amplitude
sensitivity
m(t) = message signal
DSB-SC m(t) 0
SSB:
1 1. «
(a) Upper sideband Em(t) Em(t) m(t) = Hilbert transform
transmitted of m(t) (see part (i) of footnote 4)*
. 1 1.
(b) Lower sideband Em(t) - Em(t)
transmitted
VSB:
1 1
(a) Vestige of lower Em(t) Em’(t) m'(t) = response of filter
sideband transmitted with transfer function Hy(f)
due to message signal m(z).
The Hp(f) is defined by the formula
(see part (ii) of footnote 4)
1 1 .
(b) Vestige of upper Sl —Sm@ Holf) = ~TH( + ) = H(f = )]
sideband transmitted where H(f) is the transfer function

of the VSB sideband shaping filter.

4Two additional comments on Table 3.1 are in order:

(i)

In SSB modulation, the Hilbert transform

aw:lféwﬂm

T) ol — T

defines the quadrature component of the modulated wave s(#); that is,

so(t) = m(t)
In the frequency domain, the Hilbert transformation is described by

M(f) = —j sgn(f)M(f)

where
1, forf>0
sgn(f) =40, forf=0
-1, forf<O0

is the signum function.

In VSB modulation, the quadrature component So(#) = ' (¢) is obtained by passing the message signal
m(t) through a linear time-invariant filter whose transfer function is denoted by Hp(¢). The Hp(t) is itself
defined by

Ho(f) = —j[H(f + 1) — H(f = f)]
where H(f) is the transfer function of the VSB sideband shaping filter. In the limit, as the vestige sideband
f, approaches zero, we have

Jim Ho(f) = ~ sn(f)

and with it the VSB reduces to SSB, which is exactly how it should be.
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FIGURE 3.25 (a) Scheme for deriving the in-phase and quadrature components of a
linearly modulated (i.e., band-pass) signal. (b) Scheme for reconstructing the modulated
signal from its in-phase and quadrature components.

the pair of in-phase component s;(¢) and quadrature component sp(¢), we may generate
the modulated wave s(#) using the complementary scheme shown in Fig. 3.25(b). For obvi-
ous reasons, these two schemes are respectively called the analyzer and synthesizer of
modulated waves.

» Drill Problem 3.15 Derivation of the synthesizer depicted in Fig. 3.25(b) follows directly
from Eq. (3.39). However, derivation of the analyzer depicted in Fig. 3.25(a) requires more
detailed consideration. Given that f. > W and the trigonometric identities:

cos?(2mfit) = 31 + cos(4mt)],
sin?(27f.t) = %[1 — cos(4wf.t)],
and
sin(2,1) cos(2mfit) = ysin(4mfet),

show that the analyzer of Fig. 3.25(a) yields s;(¢) and sp(¢) as its two outputs. <

BASEBAND REPRESENTATION OF BAND-PASS FILTERS

The baseband representation of a band-pass signal (exemplified by a modulated wave)
developed in this section prompts the desire to develop the corresponding representation
for band-pass filters, including band-pass communication channels.

To this end, consider a linear band-pass filter whose input—output behavior is defined
by the transfer function H(f), which is limited to frequencies within =B of the mid-band
frequency f; in effect, 2B defines the bandwidth of the filter. Suppose a modulated wave
s(#) is applied to this filter, producing the output y(#), as shown in Fig. 3.26(a). We assume
that the transmission bandwidth of the modulated wave is 2W, centered on a carrier fre-
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Modulated Band-pass Output
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H(f-f)=2H(f), >0
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(b) Comp leff CE—— Coml?lex low- —> of output signal,
envelope s(¢) pass filter H(f) 25(2)

FIGURE 3.26 Band-pass filter to complex low-pass system transformation: (a) Real-valued
band-pass configuration, and (b) corresponding complex-valued low-pass configuration.

quency f. In other words, the spectrum of the modulated wave and the frequency response
of the band-pass filter are aligned, with B = W. (The reason for ignoring the case B > W
is that in such a situation the modulated wave s(#) passes through the filter completely
unaffected, which is therefore of no practical importance.) Obviously, we may determine
the output signal y(#) by evaluating the inverse Fourier transform of the product H(f)S(f).
A simpler procedure, however, is to use a band-pass to low-pass (i.e., baseband) transfor-
mation,’ which eliminates the carrier frequency £, from the analysis. Specifically, this trans-
formation is defined by

H(f — £) = 2H(f), forf>0 (3.44)

The new frequency function H(f) is the transfer function of the complex low-pass filter,
which results from the transformation defined in Eq. (3.44). The scaling factor 2 in this equa-
tion is required to make sure that the transformation yields the exact result when we come
to evaluate the output y(t). _

According to Eq. (3.44), we may determine H(f) by proceeding as follows:

1. Given the transfer function H(f) of a band-pass filter, which is defined for both pos-
itive and negative frequencies, keep the part of H(f) that corresponds to positive fre-
quencies; let H. (f) denote this part.

2. Shift Hy(f) to the left along the frequency axis by an amount equal to f., and scale
it by the factor 2. The result so obtained defines the desired H(f).

Having determined the complex low-pass filter characterized by H(f), we may then pro-
ceed onto the next stage of complex signal processing. Specifically, we input into this fil-
ter the complex envelope 5(#) of the modulated wave s(#); the 5(¢) is derived from s(¢) in
accordance with Eq. (3.41). Then, applying 5(¢) to H(f) as depicted in Fig. 3.26(b), we
determine the complex envelope y(¢) of the output signal y(#). Finally, the actual output
y(t) is determined from the formula

y(2) = Re[y(z) exp(j2mf.t)] (3.45)
which is simply a rewrite of Eq. (3.43).
» Drill Problem 3.16 Starting with the complex low-pass system depicted in

Fig. 3.26(b), show that the y(#) derived from Eq. (3.45) is identical to the actual output y(2)
in Fig. 3.26 (a). <

5 For a derivation of the transformation defined by Eq. (3.44), see Haykin (2000), p. 731.
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3.9 Theme Examples

In this section, we describe three theme examples, which build on the continuous-wave
modulation theory described in previous sections of the chapter. The presentations empha-
size insight into the operational aspects of analog communication systems rather than
mathematical equations or design details.

SUPERHETERODYNE RECEIVER

In a broadcasting system, irrespective of whether it is based on amplitude modulation or
frequency modulation, the receiver not only has the task of demodulating the incoming
modulated signal, but also it is required to perform some other system functions:

Carrier-frequency tuning, the purpose of which is to select the desired signal (i.e.,
desired radio or TV station).

Filtering, which is required to separate the desired signal from other modulated sig-
nals that may be picked up along the way.

Amplification, which is intended to compensate for the loss of signal power incurred
in the course of transmission.

The superbeterodyne receiver, or superbet as it is often referred to, is a special type of
receiver that fulfills all three functions, particularly the first two, in an elegant and practi-
cal fashion. Specifically, it overcomes the difficulty of having to build a tunable highly
frequency-selective and variable filter. Indeed, practically all radio and TV receivers now
being made are of the superheterodyne type.

Basically, the receiver consists of a radio-frequency (RF) section, a mixer and local
oscillator, an intermediate frequency (IF) section, demodulator, and power amplifier. Typ-
ical frequency parameters of commercial AM radio receivers are listed in Table 3.2. (For
the sake of completeness, the table also includes the corresponding frequency parameters
of commercial FM receivers; frequency modulation (FM) theory is covered in Chapter 4.)
Figure 3.27 shows the block diagram of a superheterodyne receiver for amplitude modu-
lation using an envelope detector for demodulation.

The incoming amplitude-modulated wave is picked up by the receiving antenna and
amplified in the RF section that is tuned to the carrier frequency of the incoming wave. The
combination of mixer and local oscillator (of adjustable frequency) provides a heterodyn-
ing function, whereby the incoming signal is converted to a predetermined fixed interme-
diate frequency, usually lower than the incoming carrier frequency. This frequency

Antenna
===
P
7
- 4
L/ Loudspeaker
RI_’ Mixer IF Envelope Au(.llg ( ‘
section section detector amplifier Q)
4
4 ‘ ,4
Il ‘
’ C R
"l ::1 T&lon Local
PSR S & .. / oscillator

FIGURE 3.27 Basic elements of an AM radio receiver of the superheterodyne type.
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TABLE 3.2 Typical Frequency Parameters of AM and FM Radio Receivers

AM Radio FM Radio
RF carrier range 0.535-1.605 MHz 88-108 MHz
Mid-band frequency of IF section 0.455 MHz 10.7 MHz
IF bandwidth 10 kHz 200 kHz

translation is achieved without disturbing the relation of the sidebands to the carrier. The
result of the heterodyning is to produce an intermediate-frequency carrier defined by

fir = iR — fLo (3.46)

where fio is the frequency of the local oscillator and fjF is the carrier frequency of the
incoming RF signal. We refer to fir as the intermediate frequency (IF), because the signal
is neither at the original input frequency nor at the final baseband frequency. The mixer-
local oscillator combination is sometimes referred to as the first detector, in which case
the demodulator (envelope detector in Fig. 3.27) is called the second detector.

The IF section consists of one or more stages of tuned amplification, with a bandwidth
as required for the particular type of signal that the receiver is intended to handle. This sec-
tion provides most of the amplification and selectivity in the receiver. The output of the IF
section is applied to a demodulator, the purpose of which is to recover the baseband sig-
nal. If coherent detection is used, then a coherent signal source must be provided in the
receiver. The final operation in the receiver is the power amplification of the recovered
message signal.

In a superheterodyne receiver, the mixer will develop an intermediate frequency out-
put when the input signal frequency is greater or less than the local oscillator frequency by
an amount equal to the intermediate frequency. That is, there are two input frequencies—
namely, |fio * fg|, that will result in £ at the mixer output. This introduces the possibil-
ity of simultaneous reception of two signals differing in frequency by twice the intermediate
frequency. For example, a receiver tuned to 1 MHz and having an IF of 0.455 MHz is sub-
ject to an image interference at 1.910 MHz. Indeed, any receiver with this value of IE, when
tuned to any station, is subject to image interference at a frequency of 0.910 MHz higher
than the desired station. Since the function of the mixer is to produce the difference between
two applied frequencies, it is incapable of distinguishing between the desired signal and its
image in that it produces an IF output from either one of them. The only practical cure for
the suppression of image interference is to employ highly selective stages in the RF section
(i.e., between the antenna and the mixer) in order to favor the desired signal and discrim-
inate against the undesired or image signal. The effectiveness of suppressing unwanted
image signals increases as the number of selective stages in the radio-frequency section
increases and as the ratio of intermediate to signal frequency increases.

TELEVISION SIGNALS

Vestigial sideband modulation, discussed in Section 3.7, plays a key role in commercial
television. The exact details of the modulation format used to transmit the video signal
characterizing a TV system are influenced by two factors:

1. The video signal exhibits a large bandwidth and significant low-frequency content,
which suggest the use of vestigial sideband modulation.
2. The circuitry used for demodulation in the receiver should be simple and therefore

inexpensive. This suggests the use of envelope detection, which requires the addition
of a carrier to the VSB modulated wave.
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FIGURE 3.28 (a) Idealized amplitude spectrum of a transmitted TV signal. (b) Amplitude
response of a VSB shaping filter in the receiver.

With regard to point 1, however, it should be stressed that although there is indeed a basic
desire to conserve bandwidth, in commercial TV broadcasting the transmitted signal is not
quite VSB modulated. The reason is that at the transmitter the power levels are high, with
the result that it would be expensive to rigidly control the filtering of sidebands. Instead, a
VSB filter is inserted in each receiver where the power levels are low. The overall performance
is the same as conventional vestigial-sideband modulation, except for some wasted power
and bandwidth. These remarks are illustrated in Fig. 3.28. In particular, Fig. 3.28(a) shows
the idealized spectrum of a transmitted TV signal. The upper sideband, 25 percent of the
lower sideband, and the picture carrier are transmitted. The frequency response of the VSB
filter used to do the required spectrum shaping in the receiver is shown in Fig. 3.28(b).
The channel bandwidth used for TV broadcasting in North America is 6 MHz, as indi-
cated in Fig. 3.28(b). This channel bandwidth not only accommodates the bandwidth
requirement of the VSB modulated video signal but also provides for the accompanying
sound signal that modulates a carrier of its own. The values presented on the frequency axis
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in Figs. 3.28(a) and 3.28(b) pertain to a specific TV channel. According to this figure, the
picture carrier frequency is at 55.25 MHz, and the sound carrier frequency is at 59.75 MHz.
Note, however, that the information content of the TV signal lies in a baseband spectrum
extending from 1.25 MHz below the picture carrier to 4.5 MHz above it.

With regard to point 2, on page 143, the use of envelope detection (applied to a VSB
modulated wave plus carrier) produces waveform distortion in the video signal recovered
at the detector output. As discussed in Example 3.5, the waveform distortion is produced
by the quadrature component of the VSB modulated wave. As pointed out in that exam-
ple, we may reduce the extent of waveform distortion by reducing the percentage modu-
lation and minimizing the width of the vestigial sideband.

FREQUENCY-DIVISION MULTIPLEXING

Another important signal processing operation in analog communications is multiplexing,
whereby a number of independent signals can be combined into a composite signal suitable
for transmission over a common channel. Voice frequencies transmitted over telephone systems,
for example, range from 300 to 3100 Hz. To transmit a number of these signals over the same
channel (e.g. cable), the signals must be kept apart so that they do not interfere with each
other, and thus they can be separated at the receiving end. This is accomplished by separating
the signals either in frequency or in time. The technique of separating the signals in frequency
is referred to as frequency-division multiplexing (FDM), whereas the technique of separating
the signals in time is called #ime-division multiplexing (TDM). In this subsection, we discuss
FDM,; the discussion of TDM is deferred to Chapter 5.

A block diagram of an FDM system is shown in Fig. 3.29. The incoming message sig-
nals are assumed to be of the low-pass type, but their spectra do not necessarily have nonzero

Message Low-pass  Modulators Band-pass Band-pass Demodulators Low-pass  Message
inputs filters filters filters filters outputs
10—> LP —> MOD —> BP —> —> BP DEM ILIP 1
20 LP MOD BP BP DEM LP 2
. " |, Common "
. . channel . .
No LP MOD BP I—> BP DEM LP | N
| |
| | | |
| | | |
| | | |
| .o | | oo |
| | | |
: Carrier : : Carrier :
| supply | | supply |
| | | |
| | | |
I 1

j<—— Transmitter —————>

FIGURE 3.29 Block diagram of frequency-division multiplexing (FDM) system.
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values all the way down to zero frequency. Following each signal input, we have shown a low-
pass filter, which is designed to remove high-frequency components that do not contribute sig-
nificantly to signal representation but are capable of disturbing other message signals that share
the common channel. These low-pass filters may be omitted only if the input signals are suf-
ficiently band-limited initially. The filtered signals are applied to modulators that shift the fre-
quency ranges of the signals so as to occupy mutually exclusive frequency intervals. The
necessary carrier frequencies needed to perform these frequency translations are obtained
from a carrier supply. For the modulation, we may use any one of the methods described in
previous sections of this chapter. However, in telephony, the most widely used method of
modulation in frequency-division multiplexing is single sideband modulation, which, in the
case of voice signals, requires a bandwidth that is approximately equal to that of the origi-
nal voice signal. In practice, each voice input is usually assigned a bandwidth of 4 kHz. The
band-pass filters following the modulators are used to restrict the band of each modulated
wave to its prescribed range. The resulting band-pass filter outputs are next combined in par-
allel to form the input to the common channel. At the receiving terminal, a bank of band-pass
filters, with their inputs connected in parallel, is used to separate the message signals on a fre-
quency-occupancy basis. Finally, the original message signals are recovered by individual
demodulators. Note that the FDM system shown in Fig. 3.29 operates in only one direction.
To provide for two-way transmission, as in telephony for example, we have to completely
duplicate the multiplexing facilities, with the components connected in reverse order and
with the signal waves proceeding from right to left.

EXAMPLE 3.6 Modulation steps in a 60-channel FDM system

The practical implementation of an FDM system usually involves many steps of modulation
and demodulation, as illustrated in Fig. 3.30. The first multiplexing step combines 12 voice

Carrier frequencies (in kHz) Carrier frequencies (in kHz)
of voice inputs of voice inputs
\ 108 kHz \
3 552 kHz
108 — 12 612 — 5
504
104 — 11 564 — 4
456
100 — 10 516 — 3
408
9% — 9 468 — 2
360
92 — 8 420 — 1
312
88 — 7
84 — 6
80 — 5
7% — 4 Supergroup of 5 groups
72 — 3
68 — 2
64 — 1 J
4 kHz 60
T 0
Voice Basw' group ott 12
band voice inputs

FIGURE 3.30 Illustration of the modulation steps in an FDM system.
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inputs into a basic group, which is formed by having the nth input modulate a carrier at fre-
quency f, = 60 + 4n kHz, where n = 1, 2,..., 12. The lower sidebands are then selected by
band-pass filtering and combined to form a group of 12 lower sidebands (one for each voice
input). Thus the basic group occupies the frequency band 60-108 kHz. The next step in the
FDM hierarchy involves the combination of five basic groups into a supergroup. This is accom-
plished by using the #th group to modulate a carrier of frequency f. = 372 + 48n kHz, where
n=1,2,...,5. Here again the lower sidebands are selected by filtering and then combined to
form a supergroup occupying the band 312-552 kHz. Thus, a supergroup is designed to accom-
modate 60 independent voice inputs. The reason for forming the supergroup in this manner is
that economical filters of the required characteristics are available only over a limited fre-
quency range. In a similar manner, supergroups are combined into mastergroups, and master-
groups are combined into very large groups.

3.10 Summary and Discussion

In this chapter, we studied the family of amplitude modulation, in which the carrier is a sine
wave whose amplitude is varied in accordance with a message signal. The format of this
analog modulation family is typified by the example modulated wave

s(t) = Aom(t) cos(2mf.t) (3.47)

where m(t) is the message signal and A, cos(27f,¢) is the carrier. The amplitude mod-
ulation family encompasses four types of continuous wave modulation, depending on
the spectral content of the modulated wave. The four types of modulation and their
practical merits are summarized here:

1. Amplitude modulation (AM), in which the upper and lower sidebands are transmit-
ted in full, accompanied by the carrier wave. Generation of an AM wave can be
accomplished simply by using a nonlinear device (e.g., diode) in a square-law mod-
ulator, for example. By the same token, demodulation of the AM wave is accom-
plished equally simply in the receiver by using an envelope detector, for example. It
is for these two reasons, simple generation and simple detection, that amplitude mod-
ulation is commonly used in commercial AM radio broadcasting, which involves a
single powerful transmitter and numerous receivers that are relatively inexpensive to
build.

2. Double sideband-suppressed carrier (DSB-SC) modulation, defined by Eq. (3.47), in
which only the upper and lower sidebands are transmitted. The suppression of the car-
rier wave means that DSB-SC modulation requires less power than AM to transmit
the same message signal. This advantage of DSB-SC modulation over AM is, however,
attained at the expense of increased receiver complexity. DSB-SC modulation is there-
fore well suited for point-to-point communication involving one transmitter and one
receiver. In this form of analog communication, transmitted power is at a premium
and the use of a complex receiver is therefore justifiable.

3. Single sideband (SSB) modulation, in which only the upper sideband or lower side-
band is transmitted. It is optimum in the sense that it requires the minimum trans-
mitted power and the minimum channel bandwidth for conveying a message signal
from one point to another. However, implementation of the SSB transmitter imposes
several constraints on the spectral content of the incoming message signal. Specifically,
it requires the presence of a low-frequency gap around zero frequency, which for
example, is satisfied by voice signals for telephonic communication.
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4. Vestigial sideband modulation, in which “almost” the whole of one sideband and a
“vestige” of the other sideband are transmitted in a prescribed complementary fash-
ion. VSB modulation requires a channel bandwidth that is intermediate between that
required for SSB and DSB-SC systems, and the saving in bandwidth can be significant
if modulating signals with large bandwidths are being handled, as in the case of tele-
vision signals and high-speed digital data.

One final comment is in order. Although the development of the amplitude modulation
family has been motivated by its direct relevance to analog communications, many aspects
of this branch of modulation theory are equally applicable to digital communications. If,
for example, the message signal in Eq. (3.47) for the modulated wave s(2) is restricted to
levels of —1 or +1 representing a binary “0” and “1” respectively, then we have a basic
form of digital modulation known as binary phase-shift-keying (BPSK) that is discussed fur-
ther in Chapter 7.

ADDITIONAL PROBLEMS

3.17 Throughout the chapter we focused on

3.18.

3.19.

c(t) = A, cos(2mf.t)
as the sinusoidal carrier wave. Suppose we choose
c(t) = A, sin(27f.2)
as the sinusoidal carrier wave. To be consistent, suppose we also define
m(t) = A. sin(27f,t)
(a) Evaluate the spectrum of the new definition of AM:
s(t) = A1 + k,m(2)] sin(27f.t)

where k, is the amplitude sensitivity.
(b) Compare the result derived in part (a) with that studied in Example 3.1.

(c) What difference does the formulation in this problem make to the formulation of modula-
tion theory illustrated in Example 3.1?

Consider the message signal
m(t) = 20 cos(27t) volts
and the carrier wave
c(t) = 50 cos(1007¢) volts
(a) Sketch (to scale) the resulting AM wave for 75 percent modulation.

(b) Find the power developed across a load of 100 ohms due to this AM wave.
Using the message signal

ot
1+ ¢2

m(t)

determine and sketch the modulated wave for amplitude modulation whose percentage modu-
lation equals the following values:

(a) S0 percent
(b) 100 percent
(c) 125 percent
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Suppose a nonlinear device is available for which the output current i, and input voltage v; are
related by ;
i, = ayv; + aszv;

where a1 and a3 are constants. Explain how such a device could be used to provide amplitude
modulation. Could such a device also be used for demodulation? Justify your answer.
Consider the DSB-SC modulated wave obtained by using the sinusoidal modulating wave
m(t) = A,, cos(2mf,,t)
and the carrier wave
c(t) = A, cos(2mf .t + ¢)

The phase angle ¢, denoting the phase difference between ¢(#) and m(¢) at time ¢ = 0, is vari-
able. Sketch this modulated wave for the following values of ¢:

(@) ¢ =0
(b) ¢ = 45°
(c) ¢ =90°
(d) ¢ = 135°

Comment on your results.

Given the nonlinear device described in Problem 3.20, explain how it could be used to provide
a product modulator.

Consider a message signal m2(¢) with the spectrum shown in Fig. 3.31. The message bandwidth
W = 1 kHz. This signal is applied to a product modulator, together with a carrier wave
A, cos(2mf.t), producing the DSB-SC modulated wave s(#). This modulated wave is next
applied to a coherent detector. Assuming perfect synchronism between the carrier waves in the
modulator and detector, determine the spectrum of the detector output when: (a) the carrier fre-
quency f, = 1.25 kHz and (b) the carrier frequency f. = 0.75 kHz. What is the lowest carrier
frequency for which each component of the modulated wave s(#) is uniquely determined
by m(t)?

M(f)

f
-w 0 w FIGURE 3.31 Problem 3.23

Consider a composite wave obtained by adding a noncoherent carrier A, cos(2mf.t + ¢) to a
DSB-SC wave cos(27f.t)m(t). This composite wave is applied to an ideal envelope detector.
Find the resulting detector output for

(@) =0

(b) ¢ # 0 and |m(t)| << A./2

A DSB-SC wave is demodulated by applying it to a coherent detector.

(a) Evaluate the effect of a frequency error Af in the local carrier frequency of the detector, mea-
sured with respect to the carrier frequency of the incoming DSB-SC wave.

(b) For the case of a sinusoidal modulating wave, show that because of this frequency error, the
demodulated wave exhibits beats at the error frequency. Illustrate your answer with a sketch
of this demodulated wave. (A beat refers to a signal whose frequency is the difference
between the frequencies of two input signals.)
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Consider a pulse of amplitude A and duration T. This pulse is applied to a SSB modulator, pro-
ducing the modulated wave s(#). Determine the envelope of s(¢), and show that this envelope
exhibits peaks at the beginning and end of the pulse.

(a) Consider a message signal 72(t) containing frequency components at 100, 200, and 400
Hz. This signal is applied to a SSB modulator together with a carrier at 100 kHz, with only
the upper sideband retained. In the coherent detector used to recover m(t), the local oscil-
lator supplies a sinusoidal wave of frequency 100.02 kHz. Determine the frequency com-
ponents of the detector output.

(b) Repeat your analysis, assuming that only the lower sideband is transmitted.

Throughout this chapter, we have expressed the sinusoidal carrier wave in the form

c(t) = A, cos(2mf.t)

where A, is the carrier amplitude and f, is the carrier frequency. In Chapter 7 dealing with dig-
ital band-pass modulation techniques, we find it more convenient to express the carrier in the

form
c(t) = \/?bcos(Zcht)

where Ty, is the duration allotted to the transmission of symbol 1 or symbol 0. Determine the
value of carrier amplitude A, for the energy in ¢(#) per symbol to equal unity.

ADVANCED PROBLEMS

3.29

3.30

For a p-n junction diode, the current i through the diode and the voltage v across it are related by

fa2)

where I is the reverse saturation current and Vr is the thermal voltage defined by

_ kT

Vr .

where k is Boltzmann’s constant in joules per degree Kelvin, T is the absolute temperature in

degrees Kelvin, and e is the charge of an electron. At room temperature, Vr = 0.026 volt.
(a) Expand i as a power series in », retaining terms up to v°.

(b) Let
v = 0.01 cos(27@f,,t) + 0.01 cos(27f,2) volts

where f,, = 1 kHz and f, = 100 kHz. Determine the spectrum of the resulting diode cur-
rent i.
(c) Specify the bandpass filter required to extract from the diode current an AM wave with
carrier frequency f,.
(d) What is the percentage modulation of this AM wave?
Consider the quadrature-carrier multiplex system of Fig. 3.17. The multiplexed signal s(#) pro-
duced at the transmitter output in part (a) of this figure is applied to a communication channel
of transfer function H(f). The output of this channel is, in turn, applied to the receiver input
in part (b) of Fig. 3.17. Prove that the condition

H(f. + f) = H(f. — f), for0=f=W
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is necessary for recovery of the message signals 721(#) and m,(¢) at the receiver outputs; f, is

the carrier frequency, W is the message bandwidth. The asterisk in H* (f, — f) denotes com-

plex conjugation.

Hint: Evaluate the spectra of the two receiver outputs.

(a) Lets,(t) denote the SSB wave obtained by transmitting only the upper sideband, and s,,(¢)
its Hilbert transform. Show that

m(t) = A%[s,,(t) cos(2mf.t) + $,(¢) sin(27ft)]

and

m(t) = Al[@,(t) cos(2mf.t) — s,(t) sin(2wf.t)]

where m(t) is the message signal, 7:(¢) is its Hilbert transform, £, the carrier frequency,
and A, is the carrier amplitude.

(b) Show that the corresponding equations in terms of the SSB wave s;(¢) obtained by trans-
mitting only the lower sideband are

m(t) = Ai[sl(t) cos(2mf.t) + §;)(¢) sin(2wft)]

and

(t) = -[s(t) cos(2mfit) — §(1) sin(2mfor)]

C
(c) Using the results of (a) and (b), set up the block diagrams of a receiver for demodulating an
SSB wave.
Note: The Hilbert transform is defined in Problem 2.52; see also footnote 4 of this chapter.
In this problem, we continue the discussion on VSB modulation for the case when a vestige of
the lower sideband is transmitted; Fig. 3.24 depicts the frequency response H(f) of the sideband
shaping filter used to generate such a modulated wave. In particular, we wish to examine the
complex representation of this filter, denoted by H(f). N
Let Hy(f) and Hp(f) denote the in-phase and quadrature components of H(f), respec-
tively. Show that over the interval =W = f = W, we have
(a) Hj(f) represents an all-pass filter; that is, the frequency response of the filter is constant as
shown by
H(f) = 1, for—-W=f=W
where W is the message bandwidth.
(b) Ho(f) represents a low-pass filter with an odd-symmetric frequency response, described by
the following three relations
L.Ho(=f) = —Ho(f), -W=f=W

3.Hp(f) =1 forf,=f=W
where f, is the width of the vestigial sideband.



CHAPTER 4

ANGLE MODUILATION

In the previous chapter, we investigated the effect of slowly varying the amplitude of a
sinusoidal carrier wave in accordance with an information-bearing signal, keeping the car-
rier frequency fixed. There is another way of modulating a sinusoidal carrier wave—
namely, angle modulation, in which the angle of the carrier wave is varied according to the
information-bearing signal. In this second family of modulation techniques, the amplitude
of the carrier wave is maintained constant.

An important feature of angle modulation is that it can provide better discrimination
against noise and interference than amplitude modulation. As will be shown in Chapter 9,
however, this improvement in performance is achieved at the expense of increased trans-
mission bandwidth; that is, angle modulation provides us with a practical means of
exchanging channel bandwidth for improved noise performance. Such a tradeoff is not
possible with amplitude modulation. Moreover, the improvement in noise performance in
angle modulation is achieved at the cost of increased system complexity in both the trans-
mitter and receiver.

The material presented in this chapter on angle modulation will teach us three
lessons:

» Lesson 1: Angle modulation is a nonlinear process, which testifies to its sophisticated
nature. In the context of analog communications, this distinctive property of angle modu-
lation has two implications:

In analytic terms, the spectral analysis of angle modulation is complicated.

In practical terms, the implementation of angle modulation is demanding.
Both of these statements are made with amplitude modulation as the frame of reference.

» Lesson 2: Whereas the transmission bandwidth of an amplitude-modulated wave (or any
of its variants) is of limited extent, the transmission bandwidth of an angle-modulated
wave may assume an infinite extent, at least in theory.

» Lesson 3: Given that the amplitude of the carrier wave is maintained constant, we would
intuitively expect that additive noise would affect the performance of angle modulation to
a lesser extent than amplitude modulation.

152
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4.1 Basic Definitions

Let 0,(¢) denote the angle of a modulated sinusoidal carrier at time ¢; it is assumed to be a
function of the information-bearing signal or message signal. We express the resulting
angle-modulated wave as

s(t) = A, cos[6;(2)] (4.1)

where A, is the carrier amplitude. A complete oscillation occurs whenever the angle 6;(¢)
changes by 27 radians. If ;(¢) increases monotonically with time, then the average fre-
quency in hertz, over a small interval from ¢ to ¢ + At, is given by

t At) — i
fule) = 220 20D

Allowing the time interval Az to approach zero leads to the following definition for the
instantaneous frequency of the angle-modulated signal s(z):

fie) = Jim fal?)

oy 0,( + At) — 0i(t)
B Atlino 2w At
1 ds)
27 dt (4.2)

where, in the last line, we have invoked the definition for the derivative of the angle 6;(¢)
with respect to time ¢.

Thus according to Eq. (4.1), we may interpret the angle-modulated signal s(#) as a
rotating phasor of length A, and angle 6,(¢). The angular velocity of such a phasor is
d6;(t)/dt, measured in radians per second. In the simple case of an unmodulated carrier, the
angle 6;(¢) is

0;(t) = 2mft + ., for m(t) = 0

and the corresponding phasor rotates with a constant angular velocity equal to 27, radi-
ans per second. The constant ¢, defines the angle of the unmodulated carrier at time ¢ = 0.

There are an infinite number of ways in which the angle 6,(¢) may be varied in some
manner with the message signal. However, we shall consider only two commonly used
methods, phase modulation and frequency modulation, as defined below:

1. Phase modulation (PM) is that form of angle modulation in which the instantaneous
angle 0;(t) is varied linearly with the message signal m(t), as shown by

0i(t) = 27f.t + kym(2) (4.3)

The term 2rf.t represents the angle of the unmodulated carrier with the constant ¢,
set equal to zero for convenience of presentation; the constant k, represents the phase
sensitivity factor of the modulator, expressed in radians per volt on the assumption
that m(2) is a voltage waveform. The phase-modulated wave s(¢) is correspondingly
described in the time domain by

s(t) = Accos[2mf .t + kym(2)] (4.4)
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2. Frequency modulation (FM) is that form of angle modulation in which the instanta-
neous frequency f(t) is varied linearly with the message signal m(t), as shown by

fi(t) = f + kem(2) (4.5)

The constant term f, represents the frequency of the unmodulated carrier; the constant
ks represents the frequency-sensitivity factor of the modulator, expressed in hertz per
volt on the assumption that m(¢) is a voltage waveform. Integrating Eq. (4.5) with
respect to time and multiplying the result by 27, we get

0,(t) = 277%) fi(t) dr

= 2mft + 27Tl€f/ m(7) dr (4.6)
JO

where the second term accounts for the increase or decrease in the instantaneous
phase 0,(¢) due to the message signal 72(¢). The frequency-modulated wave is therefore
t

s(t) = A, COS|:27T](Ct + 27T/Q/f/ m(T) de| (4.7)
0

Table 4.1 summarizes the basic definitions embodied in the generation of angle-modulated waves.
These definitions apply to all kinds of message signals, be they of the analog or digital kind.

TABLE 4.1 Summary of Basic Definitions in Angle Modulation
Phase modulation Frequency modulation Comments
t
Instantaneous 2@ft + kym(t) 27ft + 277'/@,[/ m(t) dr A_: carrier amplitude
phase 6;(2) 0 f.: carrier frequency
m(t): message signal
ky: phase-sensitivity
factor
kg frequency-sensitivity
factor
ky d
Instantaneous fo + Tam(t) fo + kem(2)
T
frequency £(¢)
t
Modulated A cos[2mfct + kym(t)] A, COS{ZW}(J + Zﬂkf/ m(T) d’r}
wave s(z) 0

4.2 Properties of Angle-Modulated Waves

Angle-modulated waves are characterized by some important properties, which follow from
the basic definitions summarized in Table 4.1. Indeed, it is these properties that put angle-mod-
ulated waves in a family of their own, and distinguish them from the family of amplitude-
modulated waves, as illustrated by the waveforms shown in Fig. 4.1 for the example of
sinusoidal modulation. Figures 4.1(a) and 4.1(b) are the sinusoidal carrier and modulating
waves, respectively. Figures 4.1(c), 4.1(d), and 4.1(e) display the corresponding amplitude-mod-
ulated (AM), phase-modulated (PM), and frequency-modulated (FM) waves, respectively.
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()

(d)

(©)

(d

(e) — time

FIGURE 4.1 [llustration of AM, PM, and FM waves produced by a single tone.
(a) Carrier wave. (b) Sinusoidal modulating signal. (¢) Amplitude-modulated
signal. (d) Phase-modulated signal. (e) Frequency modulated signal.
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PRrROPERTY 1 Constancy of transmitted power From both Egs. (4.4) and (4.7), we
readily see that the amplitude of PM and FM waves is maintained at a constant value equal
to the carrier amplitude A, for all time t, irrespective of the sensitivity factors ky, and ky.
This property is well demonstrated by the PM wave of Fig. 4.1(d) and FM wave of Fig.
4.1(e). Consequently, the average transmitted power of angle-modulated waves is a con-
stant, as shown by

1 2
P, = EAC (4.8)
where it is assumed that the load resistor is 1 obhm.

PROPERTY 2 Nonlinearity of the modulation process Another distinctive property
of angle modulation is its nonlinear character. We say so because both PM and FM waves
violate the principle of superposition. Suppose, for example, that the message signal m(t)
is made up of two different components m1(t) and m;(t), as shown by

m(t) = my(t) + my(t)

Let s(t), s1(t), and s,(¢t) denote the PM waves produced by m(t), m(t), and m,(t) in
accordance with Eq. (4.4), respectively. In light of this equation, we may express these PM
waves as follows:

s(t) = A, cos[27ft + /ep(ml(t) + my(2))]
s1(t) = Ac cos[2mft + kymy(t)]
and
$:(t) = A.cos[2mf.t + kymy(t)]

From these expressions, despite the fact that m(t) = mq(t) + my(¢), we readily see that the
principle of superposition is violated because

s(2) # s1(t) + 52(2)

» Drill Problem 4.1 Using Eq. (4.7), show that FM waves also violate the principle of
superposition. <

The fact that the angle-modulation process is nonlinear complicates the spectral analysis
and noise analysis of PM and FM waves, compared to amplitude modulation. By the same
token, the angle-modulation process has practical benefits of its own. For example, frequency
modulation offers a superior noise performance compared to amplitude modulation, which is
attributed to the nonlinear character of frequency modulation.

PROPERTY 3 Irregularity of zero-crossings A consequence of allowing the instanta-
neous angle 0;(t) to become dependent on the message signal m(t) as in Eq. (4.3) or its inte-
gral fotm(q') dr as in Eq. (4.6) is that, in general, the zero-crossings of a PM or FM wave
no longer have a perfect regularity in their spacing across the time-scale. Zero-crossings are
defined as the instants of time at which a waveform changes its amplitude from a positive
to negative value or the other way around. In a way, the irregularity of zero-crossings in
angle-modulated waves is also attributed to the nonlinear character of the modulation
process. To illustrate this property, we may contrast the PM wave of Fig. 4.1(d) and the FM
wave of Fig. 4.1(e) to Fig. 4.1(c) for the corresponding AM wave.
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However, we may cite two special cases where regularity is maintained in angle
modulation:

1. The message signal m(t) increases or decreases linearly with time t, in which case the
instantaneous frequency f;(t) of the PM wave changes from the unmodulated carrier
frequency . to a new constant value dependent on the slope of m(t).

2. The message signal m(t) is maintained at some constant value, positive or negative,
in which case the instantaneous frequency fi(t) of the FM wave changes from the
unmodulated carrier frequency f, to a new constant value dependent on the constant
value of m(t).

In any event, it is important to note that in angle modulation, the information content of
the message signal m(t) resides in the zero-crossings of the modulated wave. This statement
holds provided the carrier frequency f. is large compared to the highest frequency compo-
nent of the message signal m(t).

PROPERTY 4 Visualization difficulty of message waveform [n AM, we see the mes-
sage waveform as the envelope of the modulated wave, provided, of course, the percent-
age modulation is less than 100 percent, as illustrated in Fig. 4.1(c) for sinusoidal
modulation. This is not so in angle modulation, as illustrated by the corresponding wave-
forms of Figs. 4.1(d) and 4.1(e) for PM and FM, respectively. In general, the difficulty in
visualizing the message waveform in angle-modulated waves is also attributed to the non-
linear character of angle-modulated waves.

PROPERTY 5 Tradeoff of increased transmission bandwidth for improved noise
performance An important advantage of angle modulation over amplitude modulation
is the realization of improved noise performance. This advantage is attributed to the fact
that the transmission of a message signal by modulating the angle of a sinusoidal carrier
wave is less sensitive to the presence of additive noise than transmission by modulating
the amplitude of the carrier. The improvement in noise performance is, however, attained
at the expense of a corresponding increase in the transmission bandwidth requirement of
angle modulation. In other words, the use of angle modulation offers the possibility of
exchanging an increase in transmission bandwidth for an improvement in noise perfor-
mance. Such a tradeoff is not possible with amplitude modulation since the transmission
bandwidth of an amplitude-modulated wave is fixed somewbhere between the message
bandwidth W and 2W, depending on the type of modulation employed. The effect of noise
on angle modulation is discussed in Chapter 9.

EXAMPLE 4.1 Zero-crossings

Consider a modulating wave m(t) that increases linearly with time ¢, starting at ¢ = 0, as
shown by

at, t=0
(A W

where a is the slope parameter; see Fig. 4.2(a). In what follows, we study the zero-crossings of
the PM and FM waves produced by m(#) for the following set of parameters:

1
fC:ZHZ

a = 1volt/s
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m(?) slope a = 1 volt/s
time ¢
0
(a)
Phase modulated wave sp(t)
1.0
time ¢
-1.0
(b)
Frequency modulated wave s¢(¢)
1.0
time ¢

-1.0

©
FIGURE 4.2 Starting at time ¢ = 0, the figure displays (@) linearly increasing
message signal m(t), (b) phase-modulated wave, and (c) frequency-modulated wave.

1. Phase modulation: phase-sensitivity factor k, = 7 radians/volt. Applying Eq. (4.4) to
the given m(#) yields the PM wave

B A; cos(2mf .t + kpat), t=0
s(2) =
A, cos(2mf 1), t<0

which is plotted in Fig. 4.2(b) for A, = 1 volt.

Let ¢, denote the instant of time at which the PM wave experiences a zero-cross-
ing; this occurs whenever the angle of the PM wave is an odd multiple of 77/2. Then, we
may set up

2mfct, + kpat, = %
as the linear equation for #,. Solving this equation for #,, we get the linear formula

+ n, n=0,1,2,...

k
2f. + 2,
a
Substituting the given values for £, , and &, into this linear formula, we get
1
t, = - tmn, n=20,1,2,...

2

where 2, is measured in seconds.
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2. Frequency modulation: frequency-sensitivity factor, ks = 1 Hz/volt. Applying Eq. (4.7)
yields the FM wave

S(2) = A cos(2mf.t + kaatz), t=0
A, cos(2mf.t), t<0
which is plotted in Fig. 4.2(c).

Invoking the definition of a zero-crossing, we may set up

2rfit, + wheaty = g +om,  n=0,1,2,...

as the quadratic equation for z,. The positive root of this equation—namely,

1 2 1
tn:akf<_fc+\/fc+6lkf(2+n)>; n=0,1,2,...

defines the formula for z,. Substituting the given values of f., a, and kf into this quadratic
formula, we get

t,,:%(—l + V9 +16n), n=0,1,2,...

where #, is again measured in seconds.

Comparing the zero-crossing results derived for PM and FM waves, we may make the
following observations once the linear modulating wave begins to act on the sinusoidal carrier
wave:

1. For PM, regularity of the zero-crossings is maintained; the instantaneous frequency
changes from the unmodulated value of f. = 1/4 Hz to the new constant value of

£, + kylaf2m) = %HZ.

2. For FM, the zero-crossings assume an irregular form; as expected, the instantaneous fre-
quency increases linearly with time #.

The angle-modulated waveforms of Fig. 4.2 should be contrasted with the corresponding
ones of Fig. 4.1. Whereas in the case of sinusoidal modulation depicted in Fig. 4.1 it is dif-
ficult to discern the difference between PM and FM, this is not so in the case of Fig. 4.2.
In other words, depending on the modulating wave, it is possible for PM and FM to exhibit
entirely different waveforms.

4.3 Relationship Between PM
and FM Waves

Examining the definitions of Egs. (4.4) and (4.7), we see that an FM wave may be viewed
as a PM wave produced by the modulating wave fotm(T) dr in place of m(t). This means
that an FM wave can be generated by first integrating the message signal #1(t) with respect
to time ¢ and then using the resulting signal as the input to a phase modulator, as shown
in Fig. 4.3(a).

Conversely, a PM wave can be viewed as an FM wave produced by the modulating
wave dm(t)/dt. Hence, a PM wave can be generated by first differentiating m2(z¢) with
respect to time ¢ and then using the resulting signal as the input to a frequency modulator,
as shown in Fig. 4.3(b).
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Modulating Ph
wave ———— Integrator ——— ase > FM wave
modulator
A cos2mf,t)
(@)
Modulating P
wave —» Differentiator —— CAUNY 5 A wave
modulator
A cosQ2mf.t)

(b)

FIGURE 4.3 Illustration of the relationship between frequency modulation and phase
modulation. (@) Scheme for generating an FM wave by using a phase modulator. (b) Scheme
for generating a PM wave by using a frequency modulator.

It follows therefore that phase modulation and frequency modulation are uniquely
related to each other. This relationship, in turn, means that we may deduce the properties
of phase modulation from those of frequency modulation and vice versa. For this reason,
in this chapter we will be focusing much of the discussion on frequency modulation.

» Drill Problem 4.2 The scheme shown in Fig. 4.3(a) provides the basis for the indirect gen-
eration of an FM wave. The phase modulator is defined by Eq. (4.4). Show that if the resulting FM
wave is to have exactly the form as that defined in Eq. (4.7), then the phase-sensitivity factor k, of
the phase modulator is related to the frequency sensitivity factor k¢ in Eq. (4.7) by the formula

ky = 2mwkfT

where T is the interval over which the integration in Fig. 4.3(a) is performed. Justify the dimen-
sionality of this expression. <

4.4 Narrow-Band Frequency Modulation

In Section 4.2, we stressed the fact that an FM wave is a nonlinear function of the modu-
lating wave. This property makes the spectral analysis of the FM wave a much more dif-
ficult task than that of the corresponding AM wave.

How then can we tackle the spectral analysis of an FM wave? We propose to provide
an empirical answer to this important question by proceeding in the following manner:

We first consider the simple case of a single-tone modulation that produces a narrow-
band FM wave.

We next consider the more general case also involving a single-tone modulation, but
this time the FM wave is wide-band.

We could, of course, go on and consider the more elaborate case of a multitone FM
wave. However, we propose not to do so, because our immediate objective is to establish
an empirical relationship between the transmission bandwidth of an FM wave and the
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message bandwidth. As we shall subsequently see, the two-stage spectral analysis described
above provides us with enough insight to propose a useful solution to the problem.
Consider then a sinusoidal modulating wave defined by

m(t) = A, cos(27f,,t) (4.9)
The instantaneous frequency of the resulting FM wave is
fi(t) = fo + kfA,, cos(2mf,,t)
= f. + Af cos(2mf,,t) (4.10)
where
Af = kA, (4.11)

The quantity Af is called the frequency deviation, representing the maximum departure of
the instantaneous frequency of the FM wave from the carrier frequency .. A fundamental
characteristic of sinusoidal frequency modulation is that the frequency deviation Af is pro-
portional to the amplitude of the modulating signal and is independent of the modulating
frequency.

Using Eq. (4.10) in the first line of Eq. (4.6), the angle 0,(¢) of the FM wave is
obtained as

0,(t) = 2mfit + ?fsin(Zﬂ'fmt) (4.12)

The ratio of the frequency deviation Af to the modulation frequency £, is commonly called
the modulation index of the FM wave. We denote this new parameter by 8, so we write

Af

P17,

(4.13)

and
0;(t) = 2mf.t + B sin(27f,,t) (4.14)

From Eq. (4.14) we see that, in a physical sense, the parameter B8 represents the phase devi-
ation of the FM wave—that is, the maximum departure of the angle 6;(¢) from the angle
2rf.t of the unmodulated carrier. Hence, B is measured in radians.

The FM wave itself is given by

s(t) = A, cos[27ft + B sin(2af,,t)] (4.15)

For the FM wave s(t) of Eq. (4.15) to be narrow-band the modulation index 8 must be
small compared to one radian. To proceed further, we use the trigonometric identity

cos(A + B) = cos A cos B — sin A sin B
to expand Eq. (4.15) as
s(t) = A, cos(2mf.t) cos| B sin(2af,t)] — A, sin(2wf.t) sin[ B sin(2a7f,,t)] (4.16)

Then under the condition that the modulation index 8 is small compared to one radian,
we may use the following two approximations for all times ¢:

cos[ B sin(27f,,t)] = 1
and

sin[ B sin(27f,,t)] = B sin(27f,,t)



162 CHAPTER 4 ANGLE MODULATION

Narrow-band
phase modulator

|
I |
Modulati |
Owlzlu;lemg_> Intesrator | Product - ! Narrow-band
= | modulator L FM wave
|
: A sinQ2wf,.t) |
|
|
| —90° I Carrier wave
: phase-shifter | A, cos2mf.t)
|

FIGURE 4.4 Block diagram of an indirect method for generating a narrow-band FM wave.
Accordingly, Eq. (4.16) simplifies to
s(t) = A, cos(2mf.t) — BA, sin(2mf.t) sin(2m7f,,t) (4.17)

Equation (4.17) defines the approximate form of a narrow-band FM wave produced by the
sinusoidal modulating wave A,, cos(27f,,t). From this approximate representation, we
deduce the modulator shown in block diagram form in Fig. 4.4. This modulator involves
splitting the carrier wave A, cos(2f.t) into two paths. One path is direct; the other path
contains a —90 degree phase-shifting network and a product modulator, the combination
of which generates a DSB-SC modulated wave. The difference between these two signals
produces a narrow-band FM wave, but with some amplitude distortion, as discussed next.

Ideally, an FM wave has a constant envelope and, for the case of a sinusoidal mod-
ulating signal of frequency f,,, the angle 6,(¢) is also sinusoidal with the same frequency.
But the modulated wave produced by the narrow-band modulator of Fig. 4.4 differs from
this ideal condition in two fundamental respects:

1. The envelope contains a residual amplitude modulation that varies with time.

2. The angle 6,(¢) contains harmonic distortion in the form of third- and higher order
harmonics of the modulation frequency f,,,.

» Drill Problem 4.3 The Cartesian representation of band-pass signals discussed in Sec-
tion 3.8 is well-suited for linear modulation schemes exemplified by the amplitude modulation
family. On the other hand, the polar representation

s(t) = a(t) cos[2mf.t + ¢(1)]

is well-suited for nonlinear modulation schemes exemplified by the angle modulation family. The
a(t) in this new representation is the envelope of s(#) and ¢(#) is its phase.
Starting with the representation [see Eq. (3.39)]

s(t) = si(t) cos(2mf.t) — sp(t) sin(27f.2)

where s;(t) is the in-phase component and sg(t) is the quadrature component, we may write

D=

a(t) = [si(1) + sp(2)]

o(t) = tanl[sg(t)}

and

s1(2)

Show that the polar representation of s(¢) in terms of a(¢) and ¢(#) is exactly equivalent to its
Cartesian representation in terms of s;(¢) and sg(¢). <
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» Drill Problem 4.4 Consider the narrow-band FM wave approximately defined by Eq.
(4.17). Building on Problem 4.3, do the following:
(a) Determine the envelope of this modulated wave. What is the ratio of the maximum to the
minimum value of this envelope?
(b) Determine the average power of the narrow-band FM wave, expressed as a percentage of
the average power of the unmodulated carrier wave.
(c) By expanding the angular argument 6(¢) = 27f.t + ¢(¢) of the narrow-band FM wave
s(¢) in the form of a power series, and restricting the modulation index 8 to a maximum
value of 0.3 radian, show that

33
0(t) = 2mf.t + B sin(2afy,t) — ?sin3(27rfmt)

What is the value of the harmonic distortion for 8 = 0.3 radian?

Hint: For small x, the following power series approximation

holds. In this approximation, terms involving x° and higher order ones are ignored, which is
justified when x is small compared to unity. <

The important point to note from Problem 4.4 is that by restricting the modulation
index to B = 0.3 radian, the effects of residual amplitude modulation and harmonic dis-
tortion are limited to negligible levels. We are therefore emboldened to proceed further
with the use of Eq. (4.17), provided 8 = 0.3 radian. In particular, we may expand the
modulated wave further into three frequency components:

s(t) = A, cos(2mf.t) + %BAC{COS[ZW(](C + fo)t] — cos[2w(f, — f.)t]}  (4.18)

This expression is somewhat similar to the corresponding one defining an AM wave, which
is reproduced from Example 3.1 of Chapter 3 as follows:

sam(f) = A, cos(2mfit) + %,LLAC{COS[ZW(]‘C v £+ cos[2m(f — £)E) (4.19)

where u is the modulation factor of the AM signal. Comparing Egs. (4.18) and (4.19) and
putting aside the respective constants 8 and w, we see that in the case of sinusoidal mod-
ulation, the basic difference between an AM wave and a narrow-band FM wave is that the
algebraic sign of the lower side-frequency in the narrow-band FM is reversed. Neverthe-
less, a narrow-band FM wave requires essentially the same transmission bandwidth (i.e.,
2f,, for sinusoidal modulation) as the AM wave.

PHASOR INTERPRETATION

We may represent the narrow-band FM wave with a phasor diagram as shown in Fig. 4.5(a),
where we have used the carrier phasor as reference. We see that the resultant of the two side-
frequency phasors is always at right angles to the carrier phasor. The effect of this geometry is
to produce a resultant phasor representing the narrow-band FM wave that is approximately
of the same amplitude as the carrier phasor, but out of phase with respect to it.
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frequency phasors
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’
. Lower e FIGURE 4.5 Phasor comparison of
side-frequency 7 o narrow-band FM and AM waves for
et sinusoidal modulation. (@) Narrow-band
(b) FM wave. (b) AM wave.

The phasor diagram for the FM wave should be contrasted with that of Fig. 4.5(b),
representing the corresponding AM wave. In this latter case, we see that the resultant pha-
sor representing the AM wave has a different amplitude from that of the carrier phasor, but
always in phase with it.

Despite the fact that both the narrow-band FM of Eq. (4.18) and the AM wave of Eq.
(4.19) have three sinusoidal components, the two parts of Fig. 4.5 clearly illustrate the
major differences between these two modulated waves; the differences are attributed to
the ways in which these two modulated waves are generated.

4.5 Wide-Band Frequency Modulation

We next wish to determine the spectrum of the single-tone FM wave defined by the exact
formula in Eq. (4.15) for an arbitrary value of the modulation index B. In general, such an
FM wave produced by a sinusoidal modulating wave is a periodic function of time ¢ only
when the carrier frequency £, is an integral multiple of the modulation frequency f,,,.

» Drill Problem 4.5 Strictly speaking, the FM wave of Eq. (4.15) produced by a sinu-
soidal modulating wave is a nonperiodic function of time #. Demonstrate this property of fre-
quency modulation. <

In light of this problem, how can we simplify the spectral analysis of the wide-band
FM wave defined in Eq. (4.15)? The answer lies in using the complex baseband represen-
tation of a modulated (i.e., bandpass) signal, which was discussed in Section 3.8. Specifi-
cally, assume that the carrier frequency . is large enough (compared to the bandwidth of
the FM wave) to justify rewriting Eq. (4.15) in the form

s(t) = Re[A, exp(j2mf.t + jB sin(27f,,t))]
= Re[5(2) exp(j2mf.t)] (4.20)
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where the operator Re|[ | extracts the real part of the complex quantity contained inside the
square brackets. The new term

3(t) = A, exp[jB sin(27f,,.t)] (4.21)

introduced in Eq. (4.21) is the complex envelope of the FM wave s(¢). The important point to
note from Eq. (4.21) is that unlike the original FM wave s(t), the complex envelope 5(¢) is a
periodic function of time with a fundamental frequency equal to the modulation frequency f,,,.
Specifically, replacing time ¢ in Eq. (4.21) with ¢ + k/f,, for some integer k, we have

s(t) = Acexp[jB sin(2mf(t + k/fn))]
= A_exp[jB sin(2wf,,t + 2km)]
= Acexp[jB sin(27f,t)]
which confirms f,,, as the fundamental frequency of s(#). We may therefore expand $(z)
in the form of a complex Fourier series as follows:

5(t) = D cpexp(i2mnf,t) (4.22)
where the complex Fourier coefficient

1/(2f,,)
6 = f / 3(t) exp(—j2mnft) dt
_1/(2fm)

1/(2f,,,)
~ e [ expli sin(2nft) = 2t di (4.23)
_1/(2fm)
Define the new variable:
x = 2mft (4.24)

Hence, we may redefine the complex Fourier coefficient ¢, in Eq. (4.23) in the new form
A [T o
Cn == exp[j(B sin x — nx)] dx (4.25)
2w J_ 5

The integral on the right-hand side of Eq. (4.25), except for the carrier amplitude A, is
referred to as the nth order Bessel function of the first kind and argument 8. This function
is commonly denoted by the symbol J,(B), so we may write

J.(B) = 1/ exp[j(B sin x — nx)] dx (4.26)
2w J_,

Accordingly, we may rewrite Eq. (4.25) in the compact form

Cn = Ac]n(.B) (4.27)

Substituting Eq. (4.27) into (4.22), we get, in terms of the Bessel function J,(B), the fol-
lowing expansion for the complex envelope of the FM wave:

1) = A S J(B) exp(i2mnfyt) (4.28)

n=—oo

Next, substituting Eq. (4.28) into (4.20), we get

S(5) = Re| A, S\ 1(B) explj2m(f, + nf)1] (4.29)

n=—oo
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The carrier amplitude A, is a constant and may therefore be taken outside the real-time oper-
ator Re[.]. Moreover, we may interchange the order of summation and real-part opera-
tion, as they are both linear operators. Accordingly, we may rewrite Eq. (4.29) in the
simplified form

o0

s(t) = A S I(B) cos[2m(f. + nf,)t] (4.30
Equation (4.30) is the desired form for the Fourier series expansion of the single-tone FM
signal s(#) for an arbitrary value of modulation index .
The discrete spectrum of s(#) is obtained by taking the Fourier transforms of both sides
of Eq. (4.30), which yields

S() =5 S MBS~ - b + 8+ 4 )] 43)

n=—oo

where s(t) = S(f) and cos(27fit) = %[6(}‘ — f;) + 8(f + f,)] for an arbitrary f;. Equation

(4.31) shows that the spectrum of s(¢) consists of an infinite number of delta functions
spaced at f = f, = nf,, forn = 0, +1, +2,....

PROPERTIES OF SINGLE-TONE FM FOR ARBITRARY MODULATION INDEX f3

In Fig. 4.6, we have plotted the Bessel function J,(B) versus the modulation index 8 for
different positive integer values of 7. We can develop further insight into the behavior of
the Bessel function J,(8) by making use of the following properties (see Appendix 3 for
more details):

FIGURE 4.6 Plots of the Bessel function of the first kind, J,(8), for varying order #.
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. For different integer (positive and negative) values of 7, we have

J(B) = J-(B),  forneven (4.32)
and
JA(B) = =I-u(B),  fornodd (4.33)
. For small values of the modulation index B, we have
J(B) =1,
he) =5, (4.34
J(B) =0, n>2
. The equality
ni@]ﬁ(ﬁ) =1 (4.35)

holds exactly for arbitrary 8.

Thus using Egs. (4.31) through (4.35) and the curves of Fig. 4.6, we may make the following
observations:

1. The spectrum of an FM wave contains a carrier component and an infinite set of side

frequencies located symmetrically on either side of the carrier at frequency separations
of frus 2fms 3fms - - - . In this respect, the result is unlike the picture that prevails in
AM, since in the latter case a sinusoidal modulating wave gives rise to only one pair
of side frequencies.

. For the special case of B small compared with unity, only the Bessel coefficients Jo(8)

and J;(B) have significant values, so that the FM wave is effectively composed of a
carrier and a single pair of side-frequencies at f. = f,,,. This situation corresponds to
the special case of narrow-band FM that was considered in Section 4.4.

. The amplitude of the carrier component varies with 8 according to Jo(8). That is,

unlike an AM wave, the amplitude of the carrier component of an FM wave is depen-
dent on the modulation index B. The physical explanation for this property is that
the envelope of an FM wave is constant, so that the average power of such a signal
developed across a 1-ohm resistor is also constant, as in Eq. (4.8), which is reproduced
here for convenience of presentation:

When the carrier is modulated to generate the FM wave, the power in the side-
frequencies may appear only at the expense of the power originally in the carrier,
thereby making the amplitude of the carrier component dependent on 8. Note that the
average power of an FM wave may also be determined from Eq. (4.30), as shown by

P=Al S JAB) (4.36)

n=—oo

Substituting Eq. (4.35) into (4.36), the expression for the average power P,, reduces
to Eq. (4.8), and so it should.
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EXAMPLE 4.2 FM Spectrum for Varying Amplitude and Frequency
of Sinusoidal Modulating Wave

In this example, we wish to investigate the ways in which variations in the amplitude and fre-
quency of a sinusoidal modulating wave affect the spectrum of the FM wave. Consider first the
case when the frequency of the modulating wave is fixed, but its amplitude is varied, produc-
ing a corresponding variation in the frequency deviation Af. Thus, keeping the modulation
frequency f,, fixed, we find that the amplitude spectrum of the resulting FM wave is as shown
plotted in Fig. 4.7 for B = 1, 2, and 5. In this diagram, we have normalized the spectrum with
respect to the unmodulated carrier amplitude.

it A p
—{2Afl—

(a)

— 1.0

Y1111 PYN
—| 2 =

(b)

— 1.0

FIGURE 4.7 Discrete amplitude
spectra of an FM wave, normalized

frequency and varying amplitude.
Only the spectra for positive
©) frequencies are shown.

with respect to the unmodulated
0t Ll by, sl e oo
A——
}
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Consider next the case when the amplitude of the modulating wave is fixed; that is, the
frequency deviation Af is maintained constant, and the modulation frequency f,, is varied. In
this second case, we find that the amplitude spectrum of the resulting FM wave is as shown
plotted in Fig. 4.8 for 8 = 1, 2, and 5. We now see that when Af is fixed and B is increased,
we have an increasing number of spectral lines crowding into the fixed frequency interval
f. — Af <|f] < f. + Af. That is, when 8 approaches infinity, the bandwidth of the FM wave
approaches the limiting value of 2Af, which is an important point to keep in mind.

— 1.0

[— 24 —

(a)

— 1.0

[— 2af —
(b)

1.0

o AATT 1A1f1AI TfAA y
— 2af —
(©)

FIGURE 4.8 Discrete amplitude spectra of an FM wave, normalized with respect to the
unmodulated carrier amplitude, for the case of sinusoidal modulation of varying frequency
and fixed amplitude. Only the spectra for positive frequencies are shown.
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4.6 Transmission Bandwidth of FM Waves

CARSON’S RULE

In theory, an FM wave contains an infinite number of side-frequencies so that the band-
width required to transmit such a modulated wave is similarly infinite in extent. In prac-
tice, however, we find that the FM wave is effectively limited to a finite number of significant
side-frequencies compatible with a specified amount of distortion. We may therefore build
on this idea to specify an effective bandwidth required for the transmission of an FM wave.
Consider first the case of an FM wave generated by a single-tone modulating wave of fre-
quency f,,. In such an FM wave, the side-frequencies that are separated from the carrier fre-
quency f, by an amount greater than the frequency deviation Af decrease rapidly toward
zero, so that the bandwidth always exceeds the total frequency excursion, but nevertheless
is limited. Specifically, we may identify two limiting cases:

1. For large values of the modulation index B, the bandwidth approaches, and is only
slightly greater than the total frequency excursion 2Af, as illustrated in Fig. 4.8(c).

2. For small values of the modulation index B, the spectrum of the FM wave is effec-
tively limited to the carrier frequency /. and one pair of side-frequencies at /. * f,,,,

so that the bandwidth approaches 2f,,,, as illustrated in Section 4.4.
In light of these two limiting scenarios, we may define an approximate rule for the trans-
mission bandwidth of an FM wave generated by a single-tone modulating wave of fre-

quency f,, as

By~ 2Af + 2f, — ZAf(l + ;) (4.37)

This simple empirical relation is known as Carson’s rule.

UNIVERSAL CURVE FOR FM TRANSMISSION BANDWIDTH

Carson’s rule is simple to use, but, unfortunately, it does not always provide a good esti-
mate of the bandwidth requirements of communication systems using wideband frequency
modulation. For a more accurate assessment of FM bandwidth, we may use a definition
based on retaining the maximum number of significant side frequencies whose amplitudes
are all greater than some selected value. A convenient choice for this value is one percent
of the unmodulated carrier amplitude. We may thus define the transmission bandwidth of
an EM wave as the separation between the two frequencies beyond which none of the side
frequencies is greater than one percent of the carrier amplitude obtained when the modu-
lation is removed. That is, we define the transmission bandwidth as 27,,.f,,, where f,, is
the modulation frequency and 7, is the largest value of the integer # that satisfies the
requirement |],(8)| > 0.01. The value of #,,,, varies with the modulation index 8 and
can be determined readily from tabulated values of the Bessel function J,(B). Table 4.2
shows the total number of significant side-frequencies (including both the upper and lower
side-frequencies) for different values of B, calculated on the one percent basis. The trans-
mission bandwidth Bt calculated using this procedure can be presented in the form of a uni-
versal curve by normalizing it with respect to the frequency deviation Af and then plotting
it versus B. This curve is shown in Fig. 4.9, which is drawn as a best fit through the set of
points obtained by using Table 4.2. In Fig. 4.9, we note that as the modulation index B is
increased, the bandwidth occupied by the significant side-frequencies drops toward that
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FIGURE 4.9 Universal curve for evaluating the one percent bandwidth of an FM wave.

value over which the carrier frequency actually deviates. This means that the small values
of modulation index B are relatively more extravagant in transmission bandwidth than
the larger values of B.

ARBITRARY MODULATING WAVE

Consider next the more general case of an arbitrary modulating wave m(#) with its high-
est frequency component denoted by W; that is, W denotes the message bandwidth. We now
have a more difficult situation to deal with. One way of tackling it is to seek a worst-case
evaluation of the transmission bandwidth. Specifically, the bandwidth required to transmit
an FM wave generated by an arbitrary modulating wave is based on a worst-case tone-
modulation analysis. We first determine the so-called deviation ratio D, defined as the ratio
of the frequency deviation Af, which corresponds to the maximum possible amplitude of

TABLE 4.2 Number of Significant Side-Frequencies of a Wide-Band FM
Signal for Varying Modulation Index

Modulation Index B Number of Significant Side-Frequencies 2n 4
0.1 2
0.3 4
0.5 4
1.0 6
2.0 8
5.0 16
10.0 28
20.0 50

30.0 70
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the modulation wave m(t), to the highest modulation frequency W. These conditions rep-
resent the extreme cases possible. We may thus formally write
D = af (4.38)
=W .
The deviation ratio D plays the same role for nonsinusoidal modulation that the modula-
tion index B plays for the case of sinusoidal modulation. Hence, replacing 8 by D and
replacing f,, with W, we may generalize Eq. (4.37) as follows:

Br = 2(Af + W) (4.39)

Hereafter, we refer to Eq. (4.39) as the generalized Carson rule for the transmission band-
width of an arbitrary FM signal. In a similar way, we may generalize the universal curve of Fig.
4.9 to obtain a value for the transmission bandwidth of the FM signal. From a practical view-
point, the generalized Carson rule somewhat underestimates the bandwidth requirement of an
FM system, whereas, in a corresponding way, using the universal curve of Fig. 4.9 yields a
somewhat conservative result. Thus, the choice of a transmission bandwidth that lies between
the bounds provided by these two rules of thumb is acceptable for most practical purposes.

EXAMPLE 4.3 Commercial FM Broadcasting

In North America, the maximum value of frequency deviation Af is fixed at 75 kHz for com-
mercial FM broadcasting by radio. If we take the modulation frequency W = 15 kHz, which
is typically the “maximum” audio frequency of interest in FM transmission, we find that the
corresponding value of the deviation ratio is [using Eq. (4.38)]

5
15
Using the values Af = 75 kHz and D = 5 in the generalized Carson rule of Eq. (4.39), we find

that the approximate value of the transmission bandwidth of the FM signal is obtained as

By = 2(75 + 15) = 180 kHz

D S

On the other hand, use of the universal curve of Fig. 4.9 gives the transmission bandwidth of
the FM signal to be

By =32 Af=32 X 75 =240 kHz

In this example, Carson’s rule underestimates the transmission bandwidth by 25 percent
compared with the result of using the universal curve of Fig. 4.9.

4.7 Generation of FM Waves

According to Eq. (4.5), the instantaneous frequency f;(¢) of an FM wave varies linearly
with the message signal m(z). For the design of a frequency modulator, we therefore need
a device that produces an output signal whose instantaneous frequency is sensitive to vari-
ations in the amplitude of an input signal in a linear manner.

There are two basic methods of generating frequency-modulated waves, one direct and
the other indirect.

DIRECT METHOD

The direct method uses a sinusoidal oscillator, with one of the reactive elements (e.g., capac-
itive element) in the tank circuit of the oscillator being directly controllable by the message
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Narrow-band frequency modulator

Message Narrow-band
signal ———— Integrator ————- phase e
m(t) modulator
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Crystal
controlled
oscillator

Frequency _)Wide—band
multiplier FM wave

FIGURE 4.10 Block diagram of the indirect method of generating a wide-band FM wave.

signal. In conceptual terms, the direct method is therefore straightforward to implement.
Moreover, it is capable of providing large frequency deviations. However, a serious limi-
tation of the direct method is the tendency for the carrier frequency to drift, which is usu-
ally unacceptable for commercial radio applications. To overcome this limitation, frequency
stabilization of the FM generator is required, which is realized through the use of feed-
back around the oscillator; see Problem 4.15 for the description of one such procedure.
Although the oscillator may itself be simple to build, the use of frequency stabilization
adds system complexity to the design of the frequency modulator.

INDIRECT METHOD: ARMSTRONG MODULATOR

In the indirect method, on the other hand, the message signal is first used to produce a
narrow-band FM, which is followed by frequency multiplication to increase the frequency
deviation to the desired level. In this second method, the carrier-frequency stability prob-
lem is alleviated by using a highly stable oscillator (e.g., crystal oscillator) in the narrow-
band FM generation; this modulation scheme is called the Armstrong wide-band frequency
modulator, in recognition of its inventor.

A simplified block diagram of this indirect FM system is shown in Fig. 4.10. The
message signal m2(2) is first integrated and then used to phase-modulate a crystal-controlled
oscillator; the use of crystal control provides frequency stability. In order to minimize the
distortion inherent in the phase modulator, the maximum phase deviation or modulation
index B is purposely kept small, thereby resulting in a narrow-band FM wave; for the
implementation of the narrow-band phase modulator, we may use the arrangement
described in Fig. 4.4. The narrow-band FM wave is next multiplied in frequency by means
of a frequency multiplier so as to produce the desired wide-band FM wave.

A frequency multiplier consists of a memoryless nonlinear device followed by a band-
pass filter, as shown in Fig. 4.11. The implication of the nonlinear device being memory-
less is that it has no energy-storage elements. The input—output relation of such a device
may be expressed in the general form

v(t) = ars(t) + ars2(¢) + -+ + a,s"(t) (4.40)

FM wave s(t) with FM wave s'(t) with carrier

. Bandpass ,
carrier frequency fe Memoryless u(t) Tl oot frequency £ = nf,
and modulation e -, —_— e —> and modulation

index 8 index 73

frequency 7f,

FIGURE 4.11 Block diagram of frequency multiplier.
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where aq, ay,. .., a, are coefficients determined by the operating point of the device, and
n is the highest order of nonlinearity. In other words, the memoryless nonlinear device is
an nth power-law device.

The input s(#) is an FM wave defined by

t

s(t) = A, COS[Z'JTfCt + 27T/ef/ m(T) d'r} (4.41)
0

where the instantaneous frequency is
fi(t) = fc + km(2) (4.42)

Suppose that (1) the mid-band frequency of the bandpass filter in Fig. 4.11 is set equal to
nf., where f, is the carrier frequency of the incoming FM wave s(t), and (2) the bandpass
filter is designed to have a bandwidth equal to # times the transmission bandwidth of s(z).
In Problem 4.24 dealing with nonlinear effects in FM systems, we address the spectral con-
tributions of such nonlinear terms as the second- and third-order terms in the input—out-
put relation of Eq. (4.40). For now it suffices to say that after bandpass filtering of the
nonlinear device’s output v(#), we have a new FM wave defined by
t

s'(2) = A, cos{Zn’fc’t + Zwkl’c/ m(1) dT:| (4.43)
0

whose instantaneous frequency is
fi(t) = nf. + nkpm(t) (4.44)

Thus, comparing Eq. (4.44) with (4.42), we see that the nonlinear subsystem of Fig. 4.11
acts as a frequency multiplier with f! = nf. and kf = nks. The frequency multiplication
ratio n is determined by the highest power 7 in the input—output relation of Eq. (4.40), char-
acterizing the memoryless nonlinear device.

4.8 Demodulation of FM Signals

Frequency demodulation is the process by means of which the original message signal is
recovered from an incoming FM wave. In other words, frequency demodulation is the
inverse of frequency modulation. With the frequency modulator being a device that pro-
duces an output signal whose instantaneous frequency varies linearly with the amplitude
of the input message signal, it follows that for frequency demodulation we need a device
whose output amplitude is sensitive to variations in the instantaneous frequency of the
input FM wave in a linear manner too.

In what follows, we describe two devices for frequency demodulation. One device,
called a frequency discriminator, relies on slope detection followed by envelope detection.
The other device, called a phase-locked loop, performs frequency demodulation in a some-
what indirect manner.

FREQUENCY DISCRIMINATOR

Recall that the FM signal is given by

s(t) = A, cos<21-rfct + 2mky A tm(f) dT>
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which is Eq. (4.41), reproduced here for convenience of presentation. The question to be
addressed is: how do we recover the message signal () from the modulated signal s(#)?
We can motivate the formulation of a receiver for doing this recovery by noting that if we
take the derivative of Eq. (4.44) with respect to time, then we obtain

ds t
% = 27AJlf. + kem(t)] sin<277fct + ZkaA m(T) dT) (4.45)

Inspecting Eq. (4.45), we observe that the derivative is a band-pass signal with amplitude
modulation defined by the multiplying term [f. + kgn(z)]. Consequently, if /. is large
enough such that the carrier is not overmodulated, then we can recover the message signal
m(t) with an envelope detector in a manner similar to that described for AM signals in
Chapter 3. This idea provides the motivation for the frequency discriminator, which is
basically a demodulator that consists of a differentiator followed by an envelope detector.

However, there are practical issues related to implementation of the discriminator as
just described—particularly, the differentiator. In Chapter 2, we showed that differentia-
tion corresponds to a linear transfer function in the frequency domain; that is,

d

7 — 2nf (4.46)
where, as usual, = implies a Fourier-transform relationship. In practical terms, it is
difficult to construct a circuit that has a transfer function equivalent to the right-hand
side of Eq. (4.46) for all frequencies. Instead, we construct a circuit that approximates
this transfer function over the band-pass signal bandwidth—in particular, for
f. — (Br/2) = |f| = f. + (Br/2), where B is the transmission bandwidth of the incoming
FM signal s(z). A typlcal transfer characteristic that satisfies this requirement is described by

j2a(f = (fe = Br/2)), fo — (B1/2) = |fl = f. + (B1/2)

4.47
0, otherwise ( )

Hi(f) ={

The transfer characteristic of this so-called slope circuit is illustrated in Fig. 4.12 for positive
frequencies. A practical slope circuit would have a nonunity gain associated with the slope;
but, to simplify matters, we assume that it has unity gain without loss of generality. The cir-
cuit is also not required to have zero response outside the transmission bandwidth, provided
that the circuit is preceded by a band-pass filter centered on f, with bandwidth Br.

H(H)
Unit slope
jmBr
0 f
Br f. Br
fc*? ¢ fc+7

FIGURE 4.12 Frequency response of an ideal slope circuit.
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It is simplest to proceed with a complex baseband representation of the signal pro-
cessing performed by the discriminator. Specifically, following the theory of this represen-
tation developed in Chapter 3, we find that the complex envelope of the FM signal s(z)
(reproduced at the bottom of page 174) is

t

s(t) = A, exp(jZﬂ'/ef/ m(T) dT) (4.48)
0

the applicability of which requires that the carrier frequency f, be large compared to Br.
Correspondingly, we may express the complex baseband filter (i.e., slope circuit) corre-
sponding to Eq. (4.48) as

~ 2 + (Bt/2 —B1/2 = f = By/2
0, otherwise

Let 31(#) denote the complex envelope of the response of the slope circuit due to 5(2).

Then, according to the band-pass to low-pass transformation described in Chapter 3, we

may express the Fourier transform of §(¢) as

1

Si(f) = Eﬁl(f)g(f)

. 1 ~ 1 1
/W(f + ZBT)S(I(), 5 Br=f=7Br

_ (4.50)
0, elsewhere

where S(f) is the Fourier transform of (). The reason for introducing the multiplying
factor 1/2 in the first line of Eq. (4.50) was delineated in Chapter 3. To determine 5(t),
which is the inverse of S{(f), we invoke two pertinent properties of the Fourier transform,
as outlined here (see Chapter 2):

1. Multiplication of the Fourier transform S(f) by j2#f is equivalent to differentiating
the inverse Fourier transform $(#) in accordance with Property 9 described in Eq.
(2.33), as shown by

D50 = pmf(n

dt
2. Application of the linearity property (i.e., Eq. (2.14)) to the nonzero part of $;(f)
yields
- 1d. 1.
=——30) + = .
s1(2) > dts(t) 2]7TBTs(t) (4.51)

Substituting Eq. (4.48) into (4.51), we get

~ 1. 2k¢ . '
si(t) = E]WACBT 1+ By m(t) exp(;Zwka m(T) dT) (4.52)

Finally, the actual response of the slope circuit due to the FM wave s(¢) is given by!

"Note that the first line of Eq. (4.53) on page 177 is a repeat of Eq. (3.43) in Chapter 3, which deals with the rela-
tionship between a modulated signal s(¢) and its complex representation 5(¢).
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s1(t) = Re[1(2) exp(2mfct)]
2k : -
_ ;TrACBT[l + (BTf>m(t)} cos(Zn’fCt + zwkf/o m(r) dr + 2) (4.53)

The next functional block to be considered is the envelope detector, which is fed by s1(#).
From Eq. (4.53), we see that s1(t) is a hybrid modulated wave, exhibiting both amplitude
modulation and frequency modulation of the message signal #1(t). Provided that we main-
tain the extent of amplitude modulation, namely,
2k¢
— |Im(t)|max < 1, for all ¢
Br

then the envelope detector recovers the message signal m2(¢), except for a bias. Specifically,
under ideal conditions, the output of the envelope detector is given by

v(t) = ;WACBT|:1 + <;kf>m(t)j| (4.54)

T

The bias in v1(2) is defined by the constant term in Eq. (4.54)—namely, wA.Bt/2.

To remove the bias, we may use a second slope circuit followed by an envelope detec-
tor of its own. This time, however, we design the slope circuit so as to have a negative
slope. On this basis, we infer from Eq. (4.54) that the output of this second configuration

is given by
1 2ks
Uz(t) =—7mAB7 1 — | — m(t) (4.55)
2 By

Accordingly, subtracting Eq. (4.55) from Eq. (4.54), we obtain an overall output that is bias-
free, as shown by

v(t) = vi(2) — va(2)
cm(t) (4.56)

where ¢ is a constant.

In light of Egs. (4.54) to (4.56), we may now construct the block diagram of Fig. 4.13
for the ideal frequency discriminator whose composition is as follows:

The upper path of the figure pertains to Eq. (4.54).

The lower path pertains to Eq. (4.55)

The summing junction accounts for Eq. (4.56).

—> Positive slope circuit ———> EnyElope
detector
Wideband FM . Message
signal 71(t)
vaves —— = (except for
scaling)
—> Negative slope circuit ———> Envelope
detector

FIGURE 4.13 Block diagram of balanced frequency discriminator.
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This particular detection system is called a balanced frequency discriminator, where the term
“balanced” refers to the fact that the two slope circuits of the system are related to each
other in the manner described in Egs. (4.54) and (4.55).

From a practical perspective, the challenge in implementing the balanced frequency dis-
criminator? of Fig. 4.13 is how to build the two slope circuits so as to satisfy the design
requirements of Egs. (4.54) and (4.55).

PHASE-LOCKED Loopr

The phase-locked loop is a feedback system whose operation is closely linked to frequency
modulation. It is commonly used for carrier synchronization, and indirect frequency demod-
ulation. The latter application is the subject of interest here.

Basically, the phase-locked loop consists of three major components:

Voltage-controlled oscillator (VCO), which performs frequency modulation on its
own control signal.

Multiplier, which multiplies an incoming FM wave by the output of the voltage-con-
trolled oscillator.

Loop filter of a low-pass kind, the function of which is to remove the high-frequency
components contained in the multiplier’s output signal and thereby shape the over-
all frequency response of the system.

As shown in the block diagram of Fig. 4.14, these three components are connected together
to form a closed-loop feedback system.

To demonstrate the operation of the phase-locked loop as a frequency demodulator,
we assume that the VCO has been adjusted so that when the control signal (i.e., input) is
zero, two conditions are satisfied:

1. The frequency of the VCO is set precisely at the unmodulated carrier frequency f, of
the incoming FM wave s(t).

2. The VCO output has a 90-degree phase-shift with respect to the unmodulated car-
rier wave.

Suppose then that the incoming FM wave is defined by

s(t) = A.sin[27ft + $1(t)] (4.57)
FM wave
s(2) —>><ﬂ> Igi(l)t(::ls v(t)
‘ @) Voltage
controlled
oscillator

FIGURE 4.14 Block diagram of the phase-locked loop.

2In Haykin (1994), pp. 178-180, a practical realization of the balanced frequency discriminator is described,
using a pair of highly resonant RLC filters. The two filters are designed to have a high O-factor. The quality fac-
tor or Q-factor of a resonant filter is a measure of how sharp the frequency response of the filter is; it is formally
defined as 27 times the ratio of the maximum energy stored in the filter to the energy dissipated in the filter, both
being measured on a per cycle basis. For the application at hand, one filter is tuned to a frequency above the unmod-
ulated carrier frequency f. and the other filter is correspondingly tuned to a frequency below f.. By making the
O-factor high, the linearity pertaining to the required portion of the total frequency response, centered on f., is
determined by the separation of the two resonant frequencies.
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where A, is the carrier amplitude. By definition, the angle ¢¢(¢) is related to the message
signal m(z) by the integral

di(2) = ZW/efA m(7) dr (4.58)

where k is the frequency-sensitivity factor of the frequency modulator responsible for the
generation of s(¢). Correspondingly, in accordance with points (1) and (2) on page 178, we
define the FM wave produced by the VCO as

r(t) = A, cos[2mf.t + $o(2)] (4.59)

where A, is the amplitude. The angle ¢,(2) is related to the control signal v(¢) of the VCO
by the integral

t
t) = Zwkv/ v(7) dr (4.60)
0

where k,, is the frequency-sensitivity factor of the VCO.

The function of the feedback loop acting around the VCO is to adjust the angle ¢,(t)
so that it equals ¢4(2), thereby setting the stage for frequency demodulation. To delve more
deeply into this function and how it can arise, we need to develop a model for the phase-
locked loop, as described next.

To this end, we first note that multiplication of the incoming FM wave s(t) by the locally
generated FM wave r(¢) produces two components (except for the scaling factor 1/2):

1. A high-frequency component, which is defined by the double-frequency term—namely,
kmAcAv Sin[477'fct + ¢1(t) + ¢2(t)]

where k,,, is the multiplier gain.

2. A low-frequency component, which is defined by the difference-frequency term—
namely,

kmAcAl/ Sin[¢1(t) - ¢2(t)]

» Drill Problem 4.6 Using a well-known trigonometric identity involving the product of
the sine of an angle and the cosine of another angle, demonstrate the two results just described
under points 1 and 2. <

With the loop-filter designed to suppress the high-frequency components in the mul-
tiplier’s output, we may henceforth discard the double-frequency term. Doing this, we may
reduce the signal applied to the loop filter to

e(t) = k,,AA, sin[d(t)] (4.61)
where ¢,(t) is the phase error defined by
d)e( ) ¢1( ) -
= $y(t) — 2k, / (4.62)

When the phase error ¢,(#) is zero, the phase-locked loop is said to be in phase-lock.
It is said to be near-phase-lock when the phase error ¢,(¢) is small compared with one
radian, under which condition we may use the approximation

sin[¢.(£)] = ¢e()
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This approximation is accurate to within four percent provided that ¢,(t) is less than 0.5
radian. Correspondingly, we may approximate the error signal of Eq. (4.61) as

Ky
= /Td)e(t) (4.63)
v
where the new parameter
Ky = k,,k,AA, (4.64)

is called the loop-gain parameter of the phase-lock loop.

The error signal e(#) acts on the loop filter to produce the overall output v(). Let h(t)
denote the impulse response of the loop filter. We may then relate v(¢) to e(#) by the con-
volution integral

v(t) = / e(t)h(t — 7)dr (4.65)
Equations (4.62), (4.63), (4.65), and (4.60), in that order, constitute a linearized feedback
model of the phase-locked loop. The model is depicted in Fig. 4.15(a) with the angle ¢(¢)
of the incoming FM wave s(¢) acting as input and the loop filter’s output v(#) acting as the
overall output of the phase-locked loop.

From linear feedback theory, we recall the following important theorem:?

When the open-loop transfer function of a linear feedback system has a large
magnitude compared with unity for all frequencies, the closed-loop transfer
function of the system is effectively determined by the inverse of the transfer func-
tion of the feedback path.

Stated in another way, the closed-loop transfer function of the feedback system becomes
essentially independent of the forward path.

From the linearized feedback model of Fig. 4.15(a), we observe three points pertinent
to the problem at hand:

1. The feedback path is defined solely by the scaled integrator described in Eq. (4.60),
which is the VCO’s contribution to the model. Correspondingly, the inverse of this
feedback path is described in the time domain by the scaled differentiator:

1 (da(2)
v(t)—zﬂ_ky< - > (4.66)

2. The closed-loop time-domain behavior of the phase-locked loop is described by the
overall output v(#) produced in response to the angle ¢¢(¢) in the incoming FM
wave s(1).

3Consider the classic example of a negative feedback amplifier, which is made up of two components: an ampli-
fier of gain w in the forward path and a network of gain 8 in the feedback path. The closed-loop gain of the ampli-
fier is defined by

n

T 1+ B

The product term uB in the denominator is the open-loop gain of the feedback amplifier. When up is large com-
pared with unity, the formula for A is effectively determined by the inverse of 3, as shown by

A~
B
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FIGURE 4.15 (a) Linearized model of the phase-locked loop. (b) Approximate form of the
model, assuming that the loop gain Kj is large compared with unity.

3. The magnitude of the open-loop transfer function of the phase-locked loop is
controlled by the loop-gain parameter K of Eq. (4.64).

Assuming that the loop-gain parameter K is large compared with unity, application of the
linear feedback theorem to the model of Fig. 4.15(a) teaches us that the closed-loop trans-
fer function (i.e., closed-loop time-domain behavior) of the phase-locked loop is effectively
determined by the inverse of the transfer function (i.e., time-domain behavior) of the feed-
back path. Accordingly, in light of the feedback theorem stated on page 180 and Eq. (4.66),
we may relate the overall output v() to the input angle ¢4(#) by the approximate formula

1 (dea(2)
u(t) = hk”( i > (4.67)

Permitting K to assume a large value has the effect of making the phase error ¢, (1)
approach zero. Under this condition, we have ¢(#) = ¢,(t) in accordance with the first
line of Eq. (4.62). This condition of approximate equality provides the rationale for replac-
ing ¢, (¢) with ¢(2) in Eq. (4.67).

In light of the approximate relationship described in Eq. (4.67), we may now simplify
the linearized feedback model of Fig. 4.15(a) to the form shown in part (b) of the figure.
Hence, substituting Eq. (4.58) into (4.67), we obtain

-1 .4 (z & [ m(r) d )
v(t) = 2k T\ 2T fA m(7) dr
ke
= —m(t) (4.68)
k,
Equation (4.68) states that when the system operates in the phase-lock mode or near phase
lock and the loop-gain parameter K is large compared with unity, frequency demodula-
tion of the incoming FM wave s(t) is accomplished; that is, the original message signal
m(t) is recovered from s(t), except for the scaling factor (ks/k,).
An important feature of the phase-locked loop, acting as a frequency demodulator,
is that the bandwidth of the incoming FM wave s(#) can be much wider than that of the
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loop filter characterized by the transfer function H(f)—that is, the Fourier transform of the
loop filter’s impulse response h(z). The transfer function H(f) of the loop filter can and
therefore should be restricted to the baseband (i.e., the original frequency band occupied
by the message signal). Then the control signal of the VCO—namely, v(¢#)—has the band-
width of the baseband (message) signal m1(¢), whereas the VCO output 7(2) is a wide-band
frequency-modulated wave whose instantaneous frequency #racks the variations in the
instantaneous frequency of the incoming FM wave s(¢) due to m(t). Here we are merely
restating the fact that the bandwidth of a wide-band FM wave is much larger than the
bandwidth of the message signal responsible for its generation.

The complexity of the phase-locked loop is determined by the transfer function H(f)
of the loop filter. The simplest form of a phase-locked loop is obtained by setting H(f) = 1;
that is, there is no loop filter, in which case the phase-locked loop is referred to as a first-
order phase-locked loop. For higher order loops, the transfer function H(f) assumes a
more complex frequency-dependent form.

A major limitation of a first-order phase-locked loop is that the loop-gain parameter
Ky controls both the loop bandwidth as well as the hold-in frequency range of the loop.
The hold-in frequency range refers to the range of frequencies for which the loop remains
in a phase-locked condition with respect to the incoming FM wave. It is for this reason that
despite its simplicity, a first-order phase-locked loop is seldom used in practice. Rather, the
recommended procedure is to use a second-order phase-locked loop, the realization of
which is satisfied by using a first-order loop filter; See Problem 4.25.

» Drill Problem 4.7 Using the linearized model of Fig. 4.15(a), show that the model is
approximately governed by the integro-differential equation

do,(t &0 doq(t
7¢dt( ) + 27Ky [m¢e(7)h(t —7)dr = d)c;t( )

Hence, derive the following two approximate results in the frequency domain:

1

(a) @ (f) = mq’l(f)
] L
(b) V(f) = Z%®1(f)
where
H
L) = Ko

is the open-loop transfer function. Finally, show that when L(f) is large compared with unity
for all frequencies inside the message band, the time-domain version of the formula in part (b)
reduces to the approximate form in Eq. (4.68). <

4.9 Theme Example: FM Stereo

Multiplexing

Stereo multiplexing is a form of frequency-division multiplexing (FDM) designed to trans-
mit two separate signals via the same carrier. It is widely used in FM radio broadcasting to
send two different elements of a program (e.g., two different sections of an orchestra, a
vocalist and an accompanist) so as to give a spatial dimension to its perception by a listener
at the receiving end.
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The specification of standards for FM stereo transmission is influenced by two factors:

1. The transmission has to operate within the allocated FM broadcast channels.
2. It has to be compatible with monophonic radio receivers.

The first requirement sets the permissible frequency parameters, including frequency devi-
ation. The second requirement constrains the way in which the transmitted signal is con-
figured.

Figure 4.16(a) shows the block diagram of the multiplexing system used in an FM
stereo transmitter. Let #7)(¢) and m1,(t) denote the signals picked up by left-hand and right-
hand microphones at the transmitting end of the system. They are applied to a simple
matrixer that generates the sum signal, m(t) + m,(t), and the difference signal,
my(t) — m,(t). The sum signal is left unprocessed in its baseband form; it is available for
monophonic reception. The difference signal and a 38-kHz subcarrier (derived from a 19-
kHz crystal oscillator by frequency doubling) are applied to a product modulator, thereby
producing a DSB-SC modulated wave. In addition to the sum signal and this DSB-SC mod-
ulated wave, the multiplexed signal 7:(¢) also includes a 19-kHz pilot to provide a reference

Matrixer
my(t) +
o %
+
mr(t) _ + i +
o z X ) mt)
T +
X <—K
Frequency
doubler
cos (27f, )
f.=19kHz
(@)
Matrixer
Baseband () + (1) +
— LPF > —> 2my(t)
+
Coherent detector
m(t) BPF —— B +
o—>—+—> centered at ——> X —> ai(}]?n — —> ¥ —> 2m,(t)
2f. =38 kHz T my(t) —m, (1)
Frequency
doubler
Narrow-bond
filter
tuned to

f.=19kHz

(b)
FIGURE 4.16 (a) Multiplexer in transmitter of FM stereo. (b) Demultiplexer in
receiver of FM stereo.



184

CHAPTER 4 ANGLE MODULATION

for the coherent detection of the difference signal at the stereo receiver. Thus in accordance
with Fig. 4.16(a), the multiplexed signal is described by

m(t) = [my(t) + m,(t)] + [m; — m,(t)] cos(4mf.t) + K cos(2mf.t) (4.69)

where f. = 19 kHz, and K is the amplitude of the pilot tone. The multiplexed signal 1(z)
then frequency-modulates the main carrier to produce the transmitted signal, this frequency
modulation is not shown in Fig. 4.16(a). The pilot is allotted between 8 and 10 percent of the
peak frequency deviation; the amplitude K in Eq. (4.69) is chosen to satisfy this requirement.

At a stereo receiver, first of all the multiplexed signal m2(¢) is recovered by frequency
demodulating the incoming FM wave. Then m(t) is applied to the demultiplexing system
shown in Fig. 4.16(b). The individual components of the multiplexed signal () are sep-
arated by the use of three appropriate filters. The recovered pilot (using a narrow-band fil-
ter tuned to 19 kHz) is frequency-doubled to produce the desired 38-kHz subcarrier. The
availability of this subcarrier enables the coberent detection of the DSB-SC modulated
wave, see the part of Fig. 4.16(b) inside the dashed rectangle. The difference signal
my(t) — m,(t) is thereby recovered. The baseband low-pass filter in the top path of
Fig. 4.16(b) is designed to pass the sum signal, m7;(¢) + m,(¢). Finally, the simple matrixer
reconstructs the original left-hand signal »2;(¢) and right-hand signal m2,(2), except for the
scaling factor 2, and applies them to their respective speakers. FM stereophonic reception
is thereby accomplished.

4.10 Summary and Discussion

In Chapter 3, we studied the underlying principles of the first family of continuous-wave (CW)

modulation, based on amplitude modulation and its variants. In this chapter, we completed the

study of the underlying principles of CW modulation, based on angle modulation.
Fundamentally, there are two kinds of angle modulation:

Phase modulation (PM), where the instantaneous phase of the sinusoidal carrier wave
is varied linearly with the message signal.

Frequency modulation (FM), where the instantaneous frequency of the sinusoidal
carrier wave is varied linearly with the message signal.

These two methods of modulation are closely related in that if we are given one of them,
we can derive the other one. For this reason we focused much of the discussion on fre-
quency modulation.

Frequency modulation (FM) is typified by the equation

t
s(t) = A, COS(ZﬂTfCt + 27ka/ m(T) d7> (4.70)
0

where m(2) is the message signal, A, cos(2/.2) is the sinusoidal carrier wave, and kg is the
frequency sensitivity of the modulator. Equation (4.70) is a repeat of Eq. (4.7), reproduced
at this point merely for convenience of presentation.

Unlike amplitude modulation, from Eq. (4.70) we see that FM is a nonlinear modu-
lation process. Accordingly, the spectral analysis of FM is more difficult than for AM. Nev-
ertheless, by studying single-tone FM, we were able to develop a great deal of insight into
the spectral properties of FM. In particular, we derived an empirical rule known as the
generalized Carson rule for an approximate evaluation of the transmission bandwidth By
of FM. According to this rule, Bt is controlled by a single parameter: the modulation index
B for sinusoidal FM or the deviation ratio D for nonsinusoidal FM.

In FM, the carrier amplitude and therefore the transmitted average power is maintained
constant. Herein lies the important advantage of FM over AM in combating the effects of noise
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or interference at reception, an issue that we study in Chapter 9, after familiarizing ourselves
with probability theory and random processes in Chapter 8. This advantage becomes increas-
ingly more pronounced as the modulation index (deviation ratio) is increased, which has the
effect of increasing the transmission bandwidth in a corresponding way. Thus, frequency
modulation provides a practical method for the tradeoff of channel bandwidth for improved
noise performance, which is not feasible with amplitude modulation.

One final comment is in order. Just as with amplitude modulation, the development
of the angle modulation family has been motivated by its direct relevance to analog com-
munications, but many aspects of this branch of modulation theory are equally applicable
to digital communications. For example, if the message signal in Eq. (4.70) is restricted to
levels of —1 or +1 representing binary 0 and binary symbol 1, respectively, then we have
a basic form of digital modulation known as binary frequency-shift-keying (BFSK), dis-
cussed in Chapter 7.

ADDITIONAL PROBLEMS

4.8 Sketch the PM and FM waves produced by the sawtooth wave shown in Fig. 4.17 as the source
of modulation.

m(t)

[

0 2T{) 3T{)

FIGURE 4.17 Problem 4.8

4.9 1In a frequency-modulated radar the instantaneous frequency of the transmitted carrier is var-
ied as in Fig. 4.18. Such a signal is generated by frequency modulation with a periodic trian-
gular modulating wave. The instantaneous frequency of the received echo signal is shown dashed
in Fig. 4.18 where 7 is the round-trip delay time. The transmitted and received echo signals are
applied to a mixer, and the difference frequency component is retained. Assuming that fyr << 1
for all 7, determine the number of beat cycles at the mixer output, averaged over one second,
in terms of the peak deviation Af of the carrier frequency, the delay 7, and the repetition fre-
quency fp of the transmitted signal. (The beat refers to a signal whose frequency is the differ-
ence between the frequencies of the two input signals.)

fi® Transmitted
signal Echo
fo+ A
fe t
f.- Af

FIGURE 4.18 Problem 4.9
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Consider an interval Az of an FM wave s(¢) = A, cos[6(t) ] such that 6(z) satisfies the condition

0(t + At) — 6(r) =
Hence, show that if At is sufficiently small, the instantaneous frequency of the FM wave inside
this interval is approximately given by

1
Ty

The sinusoidal modulating wave

m(t) = A,, cos(27f,t)

is applied to a phase modulator with phase sensitivity k,. The unmodulated carrier wave has

frequency f. and amplitude A.. Determine the spectrum of the resulting phase-modulated wave,

assuming that the maximum phase deviation 8 = k,A,, does not exceed 0.3 radian.

A carrier wave is frequency-modulated using a sinusoidal signal of frequency f,,, and amplitude A, .

(a) Determine the values of the modulation index B for which the carrier component of the FM wave
is reduced to zero. For this calculation you may use the values of Jy(B) given in Appendix 3.

(b) In a certain experiment conducted with f,, = 1 kHz and increasing A,, (starting from zero
volt), it is found that the carrier component of the FM wave is reduced to zero for the first
time when A,, = 2 volts. What is the frequency sensitivity of the modulator? What is the
value of A, for which the carrier component is reduced to zero for the second time?

A carrier wave of frequency 100 MHz is frequency-modulated by a sinusoidal wave of ampli-

tude 20 V and frequency 100 kHz. The frequency sensitivity of the modulator is 25 kHz/V.

(a) Determine the approximate bandwidth of the FM wave, using Carson’s rule.

(b) Determine the bandwidth obtained by transmitting only those side-frequencies with ampli-
tudes that exceed one percent of the unmodulated carrier amplitude. Use the universal curve
of Fig. 4.9 for this calculation.

(c) Repeat your calculations, assuming that the amplitude of the modulating wave is doubled.

(d) Repeat your calculations, assuming that the modulation frequency is doubled.

Consider a wide-band PM wave produced by the sinusoidal modulating wave A,, cos(27f,,t),

using a modulator with a phase sensitivity equal to k, radians per volt.

(a) Show that if the maximum phase deviation of the PM wave is large compared with one
radian, the bandwidth of the PM wave varies linearly with the modulation frequency f,, .

(b) Compare this characteristic of a wide-band PM wave with that of a wide-band FM wave.
Figure 4.19 shows the block diagram of a closed-loop feedback system for the carrier-frequency
stabilization of a wide-band frequency modulator. The voltage-controlled oscillator shown in
the figure constitutes the frequency modulator. Using the ideas of mixing (i.e., frequency trans-
lation) (described in Chapter 3) and frequency discrimination (described in this chapter), dis-
cuss how the feedback system of Fig. 4.19 is capable of exploiting the frequency accuracy of the
crystal oscillator to stabilize the voltage-controlled oscillator.

M Voltage-
. e(sls 48¢ 5 controlled ® Frequency-stabilized
signal m(z) oscillator FM wave
Low-pass Frequency . Crystal
filter discriminator Rl oscillator

FIGURE 4.19 Problem 4.15
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4.16 Consider the frequency demodulation scheme shown in Fig. 4.20 in which the incoming FM wave
s(2) is passed through a delay line that produces a phase shift of —/2 radians at the carrier
frequency f.. The delay-line output is subtracted from s(#), and the resulting composite wave
is then envelope-detected. This demodulator finds application in demodulating FM waves at
microwave frequencies. Assuming that

s(t) = A, cos[2mft + B sin(2wf,2)]
analyze the operation of this demodulator when the modulation index B is less than unity and
the delay T produced by the delay line is sufficiently small to justify making the approximations:
cos(2wf,, T) = 1
and
sin(27wf,,T) = 2af,, T

FM wave Delay - Envelope Output
s(?) line detector signal

;

4.17 Consider the following pair of modulating signals:

FIGURE 4.20 Problem 4.16

ait +ag, t=0
1. ml(t)={0 r =0
b2t2+b1t+b0, t=0
2. mZ(l)Z{O f =0

where the as and the bs are constant parameters.

Signal 1 is applied to a frequency modulator, while signal 2 is applied to a phase modu-
lator. Determine the conditions for which the outputs of these two angle modulators are exactly
the same.

4.18 In this problem, we work on the specifications of a superheterodyne FM receiver listed in Table
3.2. In particular, given those specifications, do the following work:

(a) Determine the range of frequencies provided by the local oscillator of the receiver in order
to accommodate the RF carrier range 88-108 MHz.

(b) Determine the corresponding range of image frequencies.

ADVANCED PROBLEMS

4.19 The instantaneous frequency of a sinusoidal wave is equal to f. + Af for |t| < T/2 and £. for
|t > T/2. Determine the spectrum of this frequency-modulated wave. Hint: Divide up the time
interval of interest into three nonoverlapping regions:

(i) —o<t< —=T/2
(i) -T2=t=T)/2
(i) T/2 <t<ow

4.20 Figure 4.21 shows the block diagram of a real-time spectrum analyzer working on the princi-

ple of frequency modulation. The given signal g(¢) and a frequency-modulated signal s(#) are

applied to a multiplier and the output g(#)s(z) is fed into a filter of impulse ~(z). The s(¢) and
h(t) are linear FM signals whose instantaneous frequencies vary at opposite rates, as shown by

s(t) = cos(2mf.t + whkt?)
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and
h(t) = cos(2mf.t — mwkt?)

where k is a constant. Show that the envelope of the filter output is proportional to the ampli-
tude spectrum of the input signal g(#) with the product term k¢ playing the role of frequency f.
Hint: Use the complex notations described in Section 3.8 for band-pass transmission.

Filter:
g(t) ——> ><—> impulse response —> Output

T h(t)

s(t)
FIGURE 4.21 Problem 4.20

Consider the modulated wave

s1(¢) = a(t) cos [wact + Zwkatm(’r) dT:|

where a(t) is a slowly varying envelope function, f. is the carrier frequency, ky is the frequency
sensitivity, and 72(#) is a message signal. The modulated wave s(t) is processed by a band-pass
limiter, which consists of a hard limiter followed by a band-pass filter. The function of the band-
pass limiter is to remove amplitude fluctuations due to a(t). Specify the parameters of the band-
pass filter component so as to produce the FM wave

s:(t) = A cos [ZWfCt + 2mrhy /O tm(f) dr}

where A is a constant amplitude.

The analysis of distortion produced in an FM wave applied to a linear communication channel
is of important practical interest. In this problem, we explore this analysis for the special case
of a wide-band FM wave produced by a sinusoidal modulating wave. Let H(f) denote the
transfer function of the channel. Starting with Eq. (4.15), do the following:

(a) Derive an expression for the modulated signal produced at the channel output.

(b) Using the expression derived in part (a), discuss the distortion produced by the channel.

In Section 4.1, we pointed out that the instantaneous angle 6;(¢) in angle-modulated waves can

be varied in accordance with a message signal #2(¢) in an infinite number of ways. The treat-

ment of angle modulation presented in this chapter focused on phase modulation and frequency

modulation as two important candidates. The purpose of this problem is to explore other meth-

ods of producing angle-modulated waves.

(a) Do this exploration by considering derivatives and integrals of the message signal #(¢) as
possible functions response for the modulation process.

(b) Would there be any practical benefits in these new methods of angle modulation? Elaborate
On your answer.

In this problem, we explore how the use of FM can overcome nonlinear distortion. Consider a
memoryless channel characterized by the nonlinear input-output relationship:

vo(t) = ayvi(t) + ayi(r) + azv; (1)
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where v;(t) is the input and v, () is the output; a1, a», and a3 are fixed coefficients. The input
is defined by the frequency-modulated signal
t

v;(t) = A, cos (27cht + 27T/e,r/0 m(T) d7>

The message bandwidth is denoted by W, and the frequency deviation of the FM signal is Af.
(a) Evaluate the output v,(2).
(b) Using the generalized Carson rule, show that if the carrier frequency satisfies the condition

£.>3Af+2W

then the effect of nonlinear distortion can be removed by band-pass filtering.
(c) Specify the mid-band frequency and bandwidth of the filter in part (b).

Consider a second-order phase-locked loop using a loop filter with the transfer function

where a is a filter parameter.
(a) Using this loop filter in the following formula (see part a of Drill Problem 4.7)

1

D,(f) :m

D4(f)

show that the resulting Fourier transform of phase error ®,(¢) is expressed as

£
(71/1n) ><I>1(f)

d,(f) =
) <1 + 200/t + /1)

where f,, is the natural frequency of the loop, and
{ = VKo/4a

is its damping factor.

(b) Hence, justify the statement that by appropriately choosing the parameters f,, and ¢, it is pos-
sible for this phase-locked loop to overcome the limitations of the first-order version of the
loop.



CHAPTER 5

PULSE MODULATION:
TRANSITION FROM ANALOG
TO DIGITAL
COMMUNICATIONS

In continuous-wave (CW) modulation, which we studied in Chapters 3 and 4, some para-
meter of a sinusoidal carrier wave is varied continuously in accordance with the message
signal. This is in direct contrast to pulse modulation, which we study in the present chap-
ter. In pulse modulation, some parameter of a pulse train is varied in accordance with the
message signal. In this context, we may distinguish two families of pulse modulation, ana-
log pulse modulation and digital pulse modulation, depending on how the modulation is
performed. In analog pulse modulation, a periodic pulse train is used as the carrier wave,
and some characteristic feature of each pulse (e.g., amplitude, duration, or position) is var-
ied in a continuous manner in accordance with the corresponding sample value of the mes-
sage signal. Thus, in analog pulse modulation, information is transmitted basically in
analog form, but the transmission takes place at discrete times. In digital pulse modula-
tion, on the other hand, the message signal is represented in a form that is discrete in both
time and amplitude, thereby permitting its transmission in digital form as a sequence of
coded pulses. Simply put, digital pulse modulation has 7o CW counterpart.

The use of coded pulses for the transmission of analog information-bearing signals
represents a basic ingredient in the application of digital communications. This chapter
may therefore be viewed as the transition from analog to digital communications in our
study of the principles of communication systems.

We begin the chapter by describing the sampling process, which is basic to all pulse
modulation systems. This is followed by a discussion of pulse-amplitude modulation,
which is the simplest form of analog pulse modulation. We then move on to describe the
quantization process, the use of which distinguishes digital pulse modulation from analog
pulse modulation. In particular, we describe three widely used forms of digital pulse
modulation—namely, pulse-code modulation, delta modulation and differential
pulse-code modulation.

The material presented in this chapter on pulse modulation teaches us the following
two lessons:

» Lesson 1: Given a strictly band-limited message signal, the sampling theorem embodies the
conditions for a uniformly sampled version of the signal to preserve its information content.

190
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» Lesson 2: Analog pulse-modulation systems rely on the sampling process to maintain con-
tinuous amplitude representation of the message signal. In contrast, digital pulse-modula-
tion systems use not only the sampling process but also the quantization process, which is
non-reversible. Quantization provides a representation of the message signal that is dis-
crete in both time and amplitude. In so doing, digital pulse modulation makes it possible
to exploit the full power of digital signal-processing techniques.

5.1 Sampling Process

Much of the material on the representation of signals and systems covered up to this stage in
the book has been devoted to signals and systems that are continuous in both time and fre-
quency. At various points in Chapter 2, however, we did consider the representation of peri-
odic signals. In particular, recall that the Fourier transform of a periodic signal with period T
consists of an infinite sequence of delta functions occurring at integer multiples of the funda-
mental frequency fo = 1/T;. We may therefore state that making a signal periodic in the time
domain has the effect of sampling the spectrum of the signal in the frequency domain. We may
go one step further by invoking the duality property of the Fourier transform, and state that
sampling a signal in the time domain has the effect of making the spectrum of the signal peri-
odic in the frequency domain. This latter issue is the subject of this section.

The sampling process is usually, but not exclusively, described in the time domain. As
such, it is an operation that is basic to digital signal processing and digital communications.
Through use of the sampling process, an analog signal is converted into a corresponding
sequence of samples that are usually spaced uniformly in time. Clearly, for such a proce-
dure to have practical utility, it is necessary that we choose the sampling rate properly, so
that the sequence of samples uniquely defines the original analog signal. This is the essence
of the sampling theorem, which is derived in what follows.

INSTANTANEOUS SAMPLING AND FREQUENCY-DOMAIN CONSEQUENCES

Consider an arbitrary signal g(¢) of finite energy, which is specified for all time z. A seg-
ment of the signal g(#) is shown in Fig. 5.1(a). Suppose that we sample the signal g(z)
instantaneously and at a uniform rate, once every T; seconds. Consequently, we obtain an
infinite sequence of samples spaced T; seconds apart and denoted by {g(nT;) }, where n takes
on all possible integer values, both positive and negative. We refer to T; as the sampling
period or sampling interval and to its reciprocal f;, = 1/7T; as the sampling rate. This ideal
form of sampling is called instantaneous sampling.

Let gs(¢) denote the signal obtained by individually weighting the elements of a peri-
odic sequence of Dirac delta functions spaced T; seconds apart by the sequence of numbers
{g(nT;)}, as shown by (see Fig. 5.1(b))

o0
g(t) = 2 g(nT)(t — nTy) (5.1)
n=—0o0

We refer to gs(t) as the instantaneously (ideal) sampled signal. The term 6(t — nT;) rep-
resents a delta function positioned at time ¢ = #T;. From the definition of the delta func-
tion presented in Section 2.4, recall that such an idealized function has unit area. We may
therefore view the multiplying factor g(»T;) in Eq. (5.1) as a “mass” assigned to the delta
function 8(¢ — nT;). A delta function weighted in this manner is closely approximated by
a rectangular pulse of duration At and amplitude g(nT;)/At; the smaller we make At, the
better the approximation will be.



192

n

o0

CHAPTER 5 PULSE MODULATION: TRANSITION FROM ANALOG TO DIGITAL COMMUNICATIONS

8()

(a)

(b)

FIGURE 5.1 Illustration of the sampling process. (a) Analog waveform g(z). (b)
Instantaneously sampled representation of g(t).

The instantaneously sampled signal gs(#) has a mathematical form similar to that of
the Fourier transform of a periodic signal. This is readily established by comparing
Eq. (5.1) for gs(¢) with the Fourier transform of a periodic signal given by the right-hand
side of Eq. (2.88). This correspondence suggests that we may determine the Fourier trans-
form of the sampled signal g5(¢#) by invoking the duality property of the Fourier transform,
the essence of which is embodied in Eq. (2.24). Indeed, by applying this property to the
Fourier transform of Eq. (2.88) and the related Eq. (2.87), we may develop Table 5.1. The
entries listed in the table describe the duality relationships between sampling in the time
domain and its counterpart, sampling in the frequency domain.

» Drill Problem 5.1
(a) Using the material presented in Section 2.5, justify the mathematical relationships
listed at the bottom of the left-hand side of Table 5.1, which pertain to ideal sampling
in the frequency domain.
(b) Applying the duality property of the Fourier transform to part (a), justify the math-
ematical relationships listed at the bottom of the right-hand side of this table, which
pertain to ideal sampling in the time-domain. <

The motivation for formulating table 5.1 is to lay the mathematical groundwork for for-
mulating the sampling theorem in the time-domain. To this end, we reproduce the rela-
tionships listed at the bottom of the right-hand side of the table in the form

oo o0

gnT)S(t — nT) == f X G(f~mf) = X gnT)exp(~2mnTf) = Go(f) (5.2)

m=—0o0 n=—oo
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TABLE 5.1 Time-Frequency Sampling-Duality Relationships

Ideal sampling in the frequency domain Ideal sampling in the time domain
(Discrete spectrum); see Chapter 2 (Discrete-time function); see this chapter
Fundamental period Ty = 1/ Sampling rate f; = 1/T;
Delta function &(f — mfy), Delta function 8(¢ — nT;)
where m = 0, 1, +2,... wheren = 0, 1, *2,...
Periodicity in the time-domain Periodicity in the frequency domain
Time-limited function Band-limited spectrum
o0 (o] o0
T X gt—mh) = 3 Glafp)®™0 3 gnT)s(t — nT)
m=—00 n=—00 n=—00
| 1
[o¢] [o¢] § (o]
> Gnfo)d(f — nfy) > g(nT)e P = X G(f = mf)
n=-—-oo n=—oo m= —00

where G(f) is the Fourier transform of the original signal g(¢), and f; = 1/7T; is the sam-
pling rate. In words, Eq. (5.2) states that the process of uniformly sampling a continuous-
time signal of finite energy results in a periodic spectrum with a repetition frequency equal
to the sampling rate.

SAMPLING THEOREM

The relations of Eq. (5.2) apply to any continuous-time signal g(¢) of finite energy. Sup-
pose, however, that the signal g(¢) is strictly band-limited, with no frequency components
higher than W hertz. That is, the Fourier transform G(f) of the signal g(¢) has the prop-
erty that G(f) is zero for |f| = W, as illustrated in Fig. 5.2(a); the shape of the spectrum
shown in this figure is intended for the purpose of illustration only. Suppose also that we
choose the sampling period T; = 1/2W, which, as we shall see, is the maximum permissi-
ble value. Then the corresponding spectrum Gy(f) of the sampled signal gs(¢) is as shown
in Fig. 5.2(b). Putting T; = 1/2W in Eq. (5.2) and using Gs(f) to denote the Fourier trans-
form of gs(¢), we may write

Gs(f) = _ioog(z’zv) exp(-”\;f) (5.3)

Equation (5.3) defines the Fourier transform Gs(f) of the sequence {g(n/2W)};, - _.., which

is obtained by uniform sampling of a continuous-time signal g(¢#) at the special rate
(1/T;) = f;, = 2W. The formula obtained by using the sampling period T; = 1/2W, shown
in Eq. (5.3), is called the discrete-time Fourier transform' of the sequence {g(nT,)}5— ..

In the Fourier formula of Eq. (5.3), time # is implicitly discretized. If we go one step further and discretize the
frequency f too by setting f = k X 2W, we get the discrete Fourier transform, which is periodic in both time and
frequency; specifically,
N-1
G = Egnexp(—jZTrnk), k=0,1,...,N—-1
n=0

where

8 = g(ﬁ) = g(nTy)

and
k
G/e = GB(ZICW) = G3 ?

The parameter N is the number of samples in each period, whether in the time or frequency domain. The discrete
Fourier transform was discussed in Chapter 2.
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FIGURE 5.2 (a) Spectrum of a strictly
Lew) band-limited signal g(). (b) Spectrum of
instantaneously sampled version of g(¢) for a
sampling period T; = 1/2W. (¢) Frequency
wol w f response of ideal low-pass filter aimed at
recovering the original message signal g(¢)
© from its uniformly sampled version.

» Drill Problem 5.2 Show that as the sampling period T; approaches zero, the formula for
the discrete-time Fourier transform Ggs(f) given in Eq. (5.3) approaches the formula for the
Fourier transform G(f). <

Returning to Eq. (5.2), suppose we isolate the term corresponding to m = 0 in the
summation term and thus write

o)

Go(f) = (G(f) + [ 2 G(f = mf)

m=—0oQ

From this expression we find that, for a strictly band-limited signal, under the two condi-
tions

1. G(f) = Ofor|fl = W
2. f=2W

the summation term is constrained to be zero. Then, solving the simplified expression for
G(f), we obtain

1
G(f) = 3 Cef),  —W<f<W (5.4)
Eliminating Gs(f) between Eq. (5.3) and Eq. (5.4) yields
_ L[ _imy
G(f) = ZWn__Oog(ZW) CXP( W ) W<f<W (5.5)

Therefore, if the sample values g(n/2W) of a signal g(#) are specified for all time, then the
Fourier transform G(f) of the signal g(#) is uniquely determined, except for the scaling fac-
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tor 1/2W, by the discrete-time Fourier transform of Eq. (5.3) for the spectrum Gs(f) lim-
ited to the interval —W = f = W. Because g(#) is related to G(f) by the inverse Fourier
transform, it follows that the signal g(z) is itself uniquely determined by the sample values
g(n/2W) for —0 < n < . In other words, the sequence {g(7#/2W)} has all the informa-
tion contained in g(#).

Consider next the problem of reconstructing the signal g(#) from the sequence of
sample values {g(7/2W)}. Substituting Eq. (5.5) into the formula for the inverse Fourier
transform defining g(#) in terms of G(f), we get

o(1) = / G(f) explj2mft) df

o0

-/ :: w73 o) e -5 exptmn) ar

We are permitted to interchange the order of summation and integration, as they are both
linear operations. Accordingly, we may go on to redefine the desired signal g(z) as

= 3 o)/ :exp[fzwf(t I (5.6)

» Drill Problem 5.3 Show that

Lt (1= ) - S = e
ZW/_WeXP’” L ow) T T e =

sinc(2Wt — n) <

In light of Problem 5.3, the formula of Eq. (5.6) reduces to

gty = g(”> sinc(2Wt — n), —w<{<o (5.7)
ns—oo  \2W
Equation (5.7) is the interpolation formula for reconstructing the original signal g(¢) from
the sequence of sample values {g(n/2W)}, with the sinc function sinc(2Wt) playing the
role of an interpolation function. Each sample is multiplied by a delayed version of the
interpolation function, and all the resulting waveforms are added to obtain g(z).

» Drill Problem 5.4 This problem is intended to identify a linear filter for satisfying the
interpolation formula of Eq. (5.7), albeit in a non-physically realizable manner. Equation (5.7)
is based on the premise that the signal g(¢) is strictly limited to the band =W = f = W. With
this specification in mind, consider an ideal low-pass filter whose frequency response H(f) is
as depicted in Fig. 5.2(c). The impulse response of this filter is defined by (see Eq. (2.25))

h(t) = sinc(2Wt), —o < < o

Suppose that the correspondingly instantaneously sampled signal gs(¢) defined in Eq. (5.1)
is applied to this ideal low-pass filter. With this background, use the convolution integral to
show that the resulting output of the filter is defined exactly by the interpolation formula of
Eq. (5.7). <

In light of Problem 5.4, we may now formally say that the synthesis filter or recon-
struction filter aimed at recovering the original strictly band-limited signal g(¢) from its
instantaneously sampled version g5(#) in accordance with Eq. (5.7) consists of an ideal
low-pass whose frequency response is limited exactly to the same band as the signal g(¢)
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itself—namely, —W = f = W. This reconstruction filter is non-causal and therefore
non-physically realizable. Later on in this section, we will describe how by relaxing the spec-
ification of the signal g(2), physical realization of the reconstruction filter can be assured.

The discrete-time Fourier transform of Eq. (5.5) defines the message spectrum G(f)
in terms of the uniformly spaced samples values g(7/2W) for o < 7 < . The interpola-
tion formula of Eq. (5.7) defines the message signal g(¢) in terms of these same sample val-
ues. On the basis of these two formulas, we may now state the sampling theorem for strictly
band-limited signals of finite energy in two equivalent parts:

1. Analysis. A band-limited signal of finite energy that has no frequency components
higher than W hertz is completely described by specifying the values of the signal at
instants of time separated by 1/2W seconds.

2. Synthesis. A band-limited signal of finite energy that has no frequency components
higher than W hertz is completely recovered from knowledge of its samples taken at
the rate of 2W samples per second.

The sampling rate of 2W samples per second for a signal bandwidth of W hertz is
called the Nyquist rate; its reciprocal 1/2W (measured in seconds) is called the Nyquist
interval. The analysis part of the sampling theorem applies to the transmitter. The synthe-
sis part of the theorem, on the other hand applies to the receiver. Note also that the Nyquist
rate is the minimum sampling rate permissible.

» Drill Problem 5.5 Specify the Nyquist rate and the Nyquist interval for each of the fol-
lowing signals:

(a) g(#) = sinc(200¢)
(b) g(t) = sinc?(200¢)
(c) g(#) = sinc(200¢) + sinc?(200¢) <

» Drill Problem 5.6 Consider uniform sampling of the sinusoidal wave

g(t) = cos(mrt)

Determine the Fourier transform of the sampled waveform for each of the following sampling
periods:

(a) T, = 0.25s
(b) T, = 1s
() T, = 1.5s |

» Drill Problem 5.7 Consider a continuous-time signal defined by

sin(rt)

) =
8(1) -
The signal g(#) is uniformly sampled to produce the infinite sequence {g(nT;)}; = —w. Deter-
mine the condition that the sampling period T; must satisfy so that the signal g(¢) is uniquely
recovered from the sequence {g(#nT;)}. <

ALIASING PHENOMENON

Derivation of the sampling theorem, as described herein, is based on the assumption that
the signal g(¢) is strictly band-limited. In practice, however, no information-bearing signal
of physical origin is strictly band-limited, with the result that some degree of undersampling
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is always encountered. Consequently, aliasing is produced by the sampling process. Alias-
ing refers to the phenomenon of a high-frequency component in the spectrum of the sig-
nal seemingly taking on the identity of a lower frequency in the spectrum of its sampled
version, as illustrated in Fig. 5.3. The aliased spectrum shown by the solid curve in Fig. 5.3(b)
pertains to an “undersampled” version of the message signal represented by the spectrum
of Fig. 5.3(a).

To combat the effects of aliasing in practice, we may use two corrective measures:

1. Prior to sampling, a low-pass anti-alias filter is used to attenuate those high-frequency
components of a message signal that are not essential to the information being con-
veyed by the signal.

2. The filtered signal is sampled at a rate slightly higher than the Nyquist rate.

The use of a sampling rate higher than the Nyquist rate also has the beneficial effect
of easing the design of the synthesis filter used to recover the original signal from its sam-
pled version. Consider the example of a message signal that has been anti-alias (low-pass)
filtered, resulting in the spectrum shown in Fig. 5.4(a). The corresponding spectrum of the
instantaneously sampled version of the signal is shown in Fig. 5.4(b), assuming a sampling
rate higher than the Nyquist rate. According to the picture depicted in Fig. 5.4(b), we now
readily see that the design of a physically realizable reconstruction filter aimed at recover-
ing the original signal from its uniformly sampled version may be achieved as follows (see
Fig. 5.4(c)):

The reconstruction filter is of a low-pass kind with a passband extending from —W
to W, which is itself determined by the anti-alias filter.

The filter has a non-zero transition band extending (for positive frequencies) from W
to f; — W, where [, is the sampling rate.

The non-zero transition band of the filter assures physical realizability, it is shown dashed
to emphasize the arbitrary way of actually realizing it.
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FIGURE 5.3 (a) Spectrum of a signal. (b) Spectrum of an undersampled version of the
signal, exhibiting the aliasing phenomenon.



198 CHAPTER 5 PULSE MODULATION: TRANSITION FROM ANALOG TO DIGITAL COMMUNICATIONS

G(f)
-W 0 W f
(a)
Gs (f)
](
f.-w £, o+ W -W 0 W f-W fs fs+ W
(b)
Amplitude
v \
// \
/ \
\
/
/ \
\
/ \
/ . f
£+ W W 0 W fe-W

(c)

FIGURE 5.4 (a) Anti-alias filtered spectrum of an information-bearing signal. (b) Spectrum
of instantaneously sampled version of the signal, assuming the use of a sampling rate greater
than the Nyquist rate. (¢) Idealized amplitude response of the reconstruction filter.

5.2 Pulse-Amplitude Modulation

Now that we understand the essence of the sampling process, we are ready to formally
define pulse-amplitude modulation, which is the simplest and most basic form of analog
pulse modulation techniques. In pulse-amplitude modulation (PAM), the amplitudes of
regularly spaced pulses are varied in proportion to the corresponding sample values of a
continuous message signal; the pulses can be of a rectangular form or some other appro-
priate shape. Pulse-amplitude modulation as defined here is somewhat similar to natural
sampling, where the message signal is multiplied by a periodic train of rectangular pulses.
In natural sampling, however, the top of each modulated rectangular pulse is permitted to
vary with the message signal, whereas in PAM it is maintained flat. (Natural sampling is
explored further in Problem 5.26.)

The waveform of a PAM signal is illustrated in Fig. 5.5. The dashed curve in this fig-
ure depicts the waveform of the message signal 7(¢), and the sequence of amplitude-mod-
ulated rectangular pulses shown as solid lines represents the corresponding PAM signal
s(#). There are two operations involved in the generation of the PAM signal:

1. Instantaneous sampling of the message signal m(¢) every T, seconds, where the sam-
pling rate f; = 1/T; is chosen in accordance with the sampling theorem.

2. Lengthening the duration of each sample, so that it occupies some finite value T.
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FIGURE 5.5 Flat-top sampling of a message signal.

In digital circuit technology, these two operations are jointly referred to as “sample and
hold.” One important reason for intentionally lengthening the duration of each sample is
to avoid the use of an excessive channel bandwidth, since bandwidth is inversely propor-
tional to pulse duration. However, care has to be exercised in how long we make the sam-
ple duration T, as the following analysis reveals.

SAMPLE-AND-HOLD FILTER: ANALYSIS

Let s(#) denote the sequence of flat-top pulses generated in the manner described in Fig. 5.5.
Hence, we may express the PAM signal as
s(t)= S m(nT)bt ~ nT) (5.8)
n=—-oo
where T, is the sampling period and m(nT;) is the sample value of () obtained at time
t = nT,. The h(2) is a standard rectangular pulse of unit amplitude and duration T, defined
as follows (see Fig. 5.6(a)):

T 1

b

1
— = =T .
2’ t=0,t (5.9)
0, otherwise

h(t) = rect T =

By definition, the instantaneously sampled version of #1(¢) is given by [see Eq. (5.1)]
o0
mo(t) =, m(nT)s(t — nTy) (5.10)
n=—oo
where 6(¢ — #T;) is a time-shifted delta function. To modify m4(¢) so as to assume the
same form as the PAM signal s(#), we convolve ms(t) with the pulse /(#), obtaining

e e]

mgs(t) * b(t) = / ms(T)b(t — 7) dr

-0

/_ i m(nT,)8(t — nT)h(t — 1) dr

o0 n=—00
o0

i M(nTs)/ (1 — nT)h(t — 7) dr (5.11)

—0o0
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where, in the last line, we have interchanged the order of summation and integration, both
of which are linear operations. Using the sifting property of the delta function—namely,

/ O(r — nT)h(t — 7) dr = h(t — nTy)
we find that Eq. (5.11) reduces to

ms(t) * h(t) = D m(nT)h(t — nT,) (5.12)
The summation terms in Egs. (5.8) and (5.12) are identical. It follows therefore that the PAM
signal s(t) is mathematically equivalent to the convolution of ms(t), the instantaneously
sampled version of m(t), and the pulse h(t), as shown by

s(t) = mg(t) * h(2) (5.13)

Taking the Fourier transform of both sides of Eq. (5.13) and recognizing that the
convolution of two time functions is transformed into the multiplication of their respective
Fourier transforms, we get

S(f) = Ms(f)H(f) (5.14)

where S(f) = F[s(2)], Ms(f) = F[ms(¢)], and H(f) = F[h(2)]. From Eq. (5.2) we find that
the Fourier transform Ms(f) is related to the original message spectrum m(z) as follows:

Ma(f) = o, 20 M(f = kf) (5.15)
where f; = 1/T; is the sampling rate. Therefore, substitution of Eq. (5.15) into (5.14) yields

S() = £, 3 M7~ KOH() (5.16)

» Drill Problem 5.8 Starting with Eq. (5.9), show that the Fourier transform of the rec-
tangular pulse 4 (¢) is given by

H(f) = Tsinc(fT) exp(—jmfT) (5.17)
What happens to H(f)/T as the pulse duration T approaches zero? |

Given a PAM signal s(¢#) whose Fourier transform S(f) is defined in Eq. (5.16), how do we
recover the original message signal #1(¢)? As a first step in this recovery, we may pass s(z)
through a low-pass filter whose frequency response is defined in Fig. 5.2(c); here it is
assumed that the message signal m(t) is limited to bandwidth W and the sampling rate f;
is larger than the Nyquist rate 2W. Then from Eq. (5.16) we find that the spectrum of the
resulting filter output is equal to M(f)H(f). This output is equivalent to passing the mes-
sage signal m(¢) through another low-pass filter of transfer function H(f). The next step
in recovering the message signal #1(#) requires the use of equalization, as discussed next.

APERTURE EFFECT AND ITS EQUALIZATION

Figure 5.6(b) shows plots of the magnitude and phase of the Fourier transform H(f) ver-
sus frequency f. From this figure we see that by using flat-top samples to generate a PAM
signal, we have introduced amplitude distortion as well as a delay of T/2. This effect is
rather similar to the variation in transmission with frequency that is caused by the finite
size of the scanning aperture in television. For this reason, the distortion caused by the use
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FIGURE 5.6 (a) Rectangular pulse h(t). (b) Spectrum H(f), defined in terms of its
magnitude and phase.

of pulse-amplitude modulation (based on flat-top sampling) to transmit an analog infor-
mation-bearing signal is referred to as the aperture effect.

This distortion may be corrected by connecting an equalizer in cascade with the low-pass
reconstruction filter, as shown in Fig. 5.7. The equalizer has the effect of decreasing the in-band
loss of the reconstruction filter as the frequency increases in such a manner as to compensate
for the aperture effect. Ideally, the amplitude response of the equalizer is given by

1 1 wf

|H(f)] B Tsinc(fT)  sin(wfT)

The amount of equalization needed in practice is usually small. Indeed, for a duty cycle
(T/T;) = 0.1, the amplitude distortion is less than 0.5 percent, in which case the need for
equalization may be omitted altogether.

PAM signal
S(t)  —

Message signal

Reconstruction Equalizer ———> ()

filter

FIGURE 5.7 Recovering the message signal m(t) from the PAM signal s(t).
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The transmission of a PAM signal imposes rather stringent requirements on the ampli-
tude and phase responses of the channel, because of the relatively short duration of the trans-
mitted pulses. Furthermore, it may be shown that the noise performance of a PAM system
can never be better than direct transmission of the message signal. Accordingly, we find that
for transmission over long distances, PAM would be used only as a means of message pro-
cessing for time-division multiplexing. The concept of time-division multiplexing is dis-
cussed later in this chapter.

5.3 Pulse-Position Modulation

In pulse-amplitude modulation, pulse amplitude is the variable parameter. Pulse duration
is the next logical parameter available for modulation. I pulse-duration modulation (PDM),
the samples of the message signal are used to vary the duration of the individual pulses. This
form of modulation is also referred to as pulse-width modulation or pulse-length modula-
tion. The modulating signal may vary the time of occurrence of the leading edge, the trail-
ing edge, or both edges of the pulse. In Fig. 5.8(c) the trailing edge of each pulse is varied
in accordance with the message signal, assumed to be sinusoidal as shown in Fig. 5.8(a).
The periodic pulse carrier is shown in Fig. 5.8(b).

m(t)

()

JHULUHLHLL

(b)

IR i|nE|u]s

(©

e

(d) Time ———

FIGURE 5.8 Illustration of two different forms of pulse-time modulation for the case of a
sinusoidal modulating wave. (@) Modulating wave. (b) Pulse carrier. (¢) PDM wave. (d) PPM
wave.
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PDM is wasteful of power, in that long pulses expend considerable power during the
pulse while bearing no additional information. If this unused power is subtracted from
PDM, so that only time transitions are essentially preserved, we obtain a more efficient
type of pulse modulation known as pulse-position modulation (PPM). In PPM, the posi-
tion of a pulse relative to its unmodulated time of occurrence is varied in accordance with
the message signal, as illustrated in Fig. 5.8(d) for the case of sinusoidal modulation.

Let T; denote the sample duration. Using the sample m2(»nT;) of a message signal m(t)

to modulate the position of the nth pulse, we obtain the PPM signal
o0

s(t) = X gt — nT; — kym(nT,)) (5.18)

n=—oo
where k,, is the sensitivity factor of the pulse-position modulator (in seconds per volt) and
g(2) denotes a standard pulse of interest. Clearly, the different pulses constituting the PPM
signal s(#) must be strictly nonoverlapping; a sufficient condition for this requirement to be
satisfied is to have

gt) =0, | > (T/2) = kylm(t)|max (5.19)

which, in turn, requires that

kol (1) |max < (T5/2) (5.20)

The closer kp|m(t)|max is to one half the sampling duration T;, the narrower must the stan-
dard pulse g(¢) be to ensure that the individual pulses of the PPM signal s(z) do not inter-
fere with each other, and the wider will the bandwidth occupied by the PPM signal be.
Assuming that Eq. (5.19) is satisfied and that there is no interference between adjacent
pulses of the PPM signal s(¢), then the signal samples #2(nT,) can be recovered perfectly.?
Furthermore, if the message signal m(¢) is strictly band-limited, it follows from the sam-
pling theorem that the original message signal #1(#) can be recovered from the PPM signal
s(¢) without distortion.

5.4 Completing the Transition
Jrom Analog to Digital

At this point in the book, it is instructive that we look at the modulation techniques that
we have studied thus far, for transmitting analog information-bearing signals (i.e., voice and
video signals) over a communication channel, and look at those that are yet to be consid-
ered. The techniques studied thus far are continuous-wave modulation and analog pulse
modulation. Although, these two families of modulation techniques are indeed different,
they share similar attributes and limitations.

First, it is natural to think of pulse-amplitude modulation as the counterpart of ampli-
tude modulation studied in Chapter 3. What do we have as a pulse-modulation counter-
part to frequency modulation studied in Chapter 4? In frequency modulation, the
zero-crossings of the modulated wave vary with time in accordance with the message sig-
nal. In pulse-position modulation, the positions of transmitted pulses vary with time in
accordance with the message signal. In a loose sense, we may therefore think of pulse-posi-
tion modulation as the counterpart of frequency modulation.

An intuitive conclusion to draw from this loose analogy between members of analog
pulse modulation and those of continuous-wave modulation is that these two families of
modulation techniques offer the same order of performance when they are applied to the
transmission of analog signals over communication channels. In the context of performance,
we are thinking in terms of transmission bandwidth requirement and receiver noise behavior.

2Generation and detection of PPM waves are discussed in Haykin (1994), pp. 365-369.
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The operational feature that distinguishes the two families is that continuous-wave
modulation techniques operate in continuous time, whereas analog pulse modulation tech-
niques operate in discrete time.

In going from continuous-wave modulation to analog pulse modulation, we have
moved ourselves into discrete-time signal processing. Why not go one step further and also
incorporate amplitude discretization? Indeed, this is precisely what is done in digital pulse
modulation. In so doing, we have a new family of modulation techniques for the trans-
mission of analog signals over communication channels. The advantages offered by digi-
tal pulse modulation techniques include the following:

1. Performance. In an analog communication system, using either a continuous-wave
modulation or analog pulse modulation technique, the effects of signal distortion and
channel noise (incurred along the transmission path) are cumulative. These sources
of impairments therefore tend to become progressively stronger, ultimately over-
whelming the ability of the communication system to offer an acceptable level of per-
formance from source to destination. Unfortunately, the use of repeaters in the form
of amplifiers, placed at different points along the transmission path, offers little help
because the message signal and noise are amplified to the same extent. In sharp con-
trast, digital pulse modulation permits the use of regenerative repeaters, which, when
placed along the transmission path at short enough distances, can practically elimi-
nate the degrading effects of channel noise and signal distortion.

2. Ruggedness. Unlike an analog communication system, a digital communication sys-
tem can be designed to withstand the effects of channel noise and signal distortion,
provided the noise and distortion are kept under certain limits.

3. Reliability. Digital communication systems can be made highly reliable by exploiting
powerful error-control coding techniques in such a way that the estimate of a mes-
sage signal delivered to a user is almost indistinguishable from the message signal
delivered by a source of information at the other end of the system. (Error-control cod-
ing is discussed in Chapter 10.)

4. Security. By the same token, digital communication systems can be made highly secure
by exploiting powerful encryption algorithms that rely on digital processing for their
implementation.

5. Efficiency. Digital communication systems are inherently more efficient than analog
communication systems in the tradeoff between transmission bandwidth and signal-
to-noise ratio.

6. System integration. The use of digital communications makes it possible to integrate
digitized analog signals (i.e., voice and video signals) with digital computer data,
which is not possible with analog communications.

This impressive list of advantages has made the use of digital pulse modulation techniques
the method of choice for the transmission of voice and video signals over communication
channels.

The benefits of using digital pulse modulation, however, are attained at the expense
of increased system complexity. Nevertheless, by exploiting the computing power of digi-
tal signal processors in hardware and/or software form and the flexibility these processors
offer, digital communication systems can be designed in a cost-effective manner, thanks to
the continuing improvements in very-large-scale integrated (VLSI) silicon chips.

Now that we have identified the digital pulse modulation family as the method of choice
for communications, our next task in this chapter is to describe three family members—namely,
pulse-code modulation, delta modulation, and differential pulse-code modulation. The study
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of pulse-code modulation occupies Sections 5.5 and 5.6, followed by the other two in Sec-

tions 5.7 and 5.8, respectively. Pulse-code modulation is the standard against which delta mod-
ulation and differential pulse-code modulation are usually compared.

5.5 Quantization Process

A continuous signal, such as voice, has a continuous range of amplitudes and therefore its
samples have a continuous amplitude range. In other words, within the finite amplitude
range of the signal, we find an infinite number of amplitude levels. In actual fact, however,
it is not necessary to transmit the exact amplitudes of the samples. We say so because any
human sense (the ear or the eye) as the ultimate receiver can detect only finite intensity dif-
ferences. This means that the original continuous signal may be approximated by a signal
constructed of discrete amplitudes selected on a minimum-error basis from an available set.
The existence of a finite number of discrete amplitude levels is a basic condition of digital-
pulse modulation. Clearly, if we assign the discrete amplitude levels with sufficiently close
spacing, we can make the approximated signal indistinguishable from the original contin-
uous signal for all practical purposes. Note also that quantization is non-reversible.

Amplitude quantization is defined as the process of transforming the sample ampli-
tude m(n'ly) of a baseband signal m(t) at time t = n'l} into a discrete amplitude v(n'T)
taken from a finite set of possible levels. We confine attention to a quantization process that
is memoryless and instantaneous, which means that the transformation at time ¢t = #nT; is
not affected by earlier or later samples of the message signal. This form of quantization,
though not optimal, is commonly used in practice because of its simplicity.

When dealing with a memoryless quantizer, we may simplify the notation by drop-
ping the time index. That is, we use the symbol 7 in place of the sample m(»T;), as indi-
cated in Fig. 5.9(a). Then, as shown in Fig. 5.9(b), the signal amplitude # is specified by
the index k if it lies inside the interval

Le {my<m=mpoq}, k=1,2,...,L (5.21)

where L is the total number of amplitude levels used in the gquantizer, which refers to the
subsystem that performs the quantization process. The amplitudes, m, k = 1,2,..., L, are
called decision levels or decision thresholds. At the quantizer output, the index k is trans-
formed into an amplitude vy, that represents all amplitudes that lie inside the interval I,. The
amplitudes vy, k = 1, 2,..., L, are called representation levels or reconstruction levels,
and the spacing between two adjacent representation levels is called a guantum or step-size.
Thus, the quantizer output v equals vy, if the input signal sample 72 belongs to the interval
I,. The mapping

v = g(m) (5.22)

is the quantizer characteristic. This characteristic is described by a staircase function.
Quantizers can be of a uniform or nonuniform type. In a uniform quantizer, the rep-

resentation levels are uniformly spaced; otherwise, the quantizer is nonuniform. The quan-

tizers considered in this section are of the uniform variety; nonuniform quantizers are

Iy,
Continuous . Discrete —_—
Quantizer
sample 77 —>- ——> sample v A *—o—¢ hd
8() Mp_y My UV My My
(a) (b)

FIGURE 5.9 Description of a memoryless quantizer.
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FIGURE 5.10 Two types of quantization: () midtread and (b) midrise.

considered in Section 5.6. The quantizer characteristic can also be of a midtread or midrise
type. Figure 5.10(a) shows the input—output characteristic of a uniform quantizer of the
midtread type, which is so called because the origin lies in the middle of a tread of the
staircaselike graph. Figure 5.10(b) shows the corresponding input—output characteristic of
a uniform quantizer of the midrise type, in which the origin lies in the middle of a rising
part of the staircaselike graph. Note that both the midtread and midrise types of uniform
quantizers, illustrated in Fig. 5.10, are symmetric about the origin.

5.6 Pulse-Code Modulation

With the sampling and quantization processes at our disposal, we are now ready to describe
pulse-code modulation, which is the most basic form of digital pulse modulation. In pulse-
code modulation (PCM), a message signal is represented by a sequence of coded pulses, which
is accomplished by representing the signal in discrete form in both time and amplitude.

The basic operations performed in the transmitter of a PCM system are sampling, quan-
tization, and encoding, as shown in Fig. 5.11(a); the low-pass filter prior to sampling is included
merely to prevent aliasing of the message signal. The quantizing and encoding operations are
usually performed in the same circuit, which is called an analog-to-digital converter.

The basic operations in the receiver are regeneration of impaired signals, decoding,
and reconstruction of the train of quantized samples, as shown in Fig. 5.11(c). Regenera-
tion also occurs at intermediate points along the transmission path as necessary, as indicated
in Fig. 5.11(b). When time-division multiplexing (discussed later in the chapter) is used, it
becomes necessary to synchronize the receiver to the transmitter for the overall system to
operate satisfactorily. In what follows we describe the operations of sampling, quantizing,
and encoding that are basic to a PCM system.

OPERATIONS IN THE TRANSMITTER

(1) Sampling
The incoming message (baseband) signal is sampled with a train of rectangular pulses,
narrow enough to closely approximate the instantaneous sampling process. To ensure
perfect reconstruction of the message signal at the receiver, the sampling rate must be

greater than twice the highest frequency component W of the message signal in accor-
dance with the sampling theorem. In practice, an anti-alias (low-pass) filter is used at
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FIGURE 5.11 The basic elements of a PCM system: (@) Transmitter, (b) transmission path,
connecting the transmitter to the receiver, and (c) receiver.

the front end of the sampler in order to exclude frequencies greater than W before sam-
pling, as shown in Fig. 5.11(a). Thus the application of sampling permits the reduc-
tion of the continuously varying message signal (of some finite duration) to a limited
number of discrete values per second.
(il) Nonuniform Quantization

The sampled version of the message signal is then quantized, thereby providing a new
representation of the signal that is discrete in both time and amplitude. The quanti-
zation process may follow a uniform law as described in Section 5.5. In certain appli-
cations, however, it is preferable to use a variable separation between the
representation levels. For example, the range of voltages covered by voice signals,
from the peaks of loud talk to the weak passages of weak talk, is on the order of
1000 to 1. By using a nonuniform quantizer with the feature that the step size increases
as the separation from the origin of the input—output amplitude characteristic is
increased, the large end-step of the quantizer can take care of possible excursions of
the voice signal into the large amplitude ranges that occur relatively infrequently. In
other words, the weak passages that need more protection are favored at the expense
of the loud passages. In this way, a nearly uniform percentage precision is achieved
throughout the greater part of the amplitude range of the input signal, with the result
that fewer steps are needed than would be the case if a uniform quantizer were used.

The use of a nonuniform quantizer is equivalent to passing the message signal
through a compressor and then applying the compressed signal to a uniform quan-
tizer. A particular form of compression law that is used in practice is the so called
u-law? defined by

~ log(1 + ulml)

lv| = Tog(1 + ) (5.23)

3The u-law used for signal compression is described in Smith (1957); this compression law is used in the United States,
Canada, and Japan. In Europe, the A-law is used for signal compression; this second compression law is described in
Cattermole (1969, pp. 133-140). For discussion of the p-law and A-law, see also the paper by Kaneko (1970).
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where the logarithm is the natural logarithm; 72 and v are respectively the normalized
input and output voltages, and w is a positive constant. For convenience of presen-
tation, the input to the quantizer and its output are both normalized so as to occupy
a dimensionless range of values from zero to one, as shown in Fig. 5.12(a); here we
have plotted the u-law for varying . Practical values of w tend to be in the vicinity
of 255. The case of uniform quantization corresponds to u = 0. For a given value of
W, the reciprocal slope of the compression curve, which defines the quantum steps,
is given by the derivative of |m| with respect to |v]; that is,

dlm]  log(1 + u)
d|

(1 + ulml) (5.24)

We see therefore that the u-law is neither strictly linear nor strictly logarithmic, but
it is approximately linear at low input levels corresponding to u|m| << 1, and approx-
imately logarithmic at high input levels corresponding to ulm| => 1.
Another compression law that is used in practice is the so-called A-law, defined by
Alrm|
1+ logA’
1+ log(Alm]) 1

—S|m|sl

1+1logA ° A

OS|m|S

A

lv| = (5.25)

which is shown plotted in Fig. 5.12(b). Typical values of A used in pratice tend to be
in the vicinity of 100. The case of uniform quantization corresponds to A = 1. The
reciprocal slope of this second compression curve is given by the derivative of ||
with respect to |v], as shown by
1+ log A
d|m| 3 A ’

m = (5.26)

(1 +log A, ¢ = || =1

1.0 ,
N, w =100 A= 100
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(@) (b)
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FIGURE 5.12 Compression laws. (@) u-law. (b) A-law.
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From the first line of Eq. (5.26) we may infer that the quantum steps over the cen-
tral linear segment, which have the dominant effect on small signals, are diminished
by the factor A/(1 + log A). This is typically about 25 dB in practice, as compared
with uniform quantization.

» Drill Problem 5.9 Using Eqgs. (5.23) and (5.25), respectively, derive the slope charac-

teristics of Egs. (5.24) and (5.26). <«

(i) Encoding
In combining the processes of sampling and quantization, the specification of a con-
tinuous message (baseband) signal becomes limited to a discrete set of values, but
not in the form best suited to transmission over a wire line or radio path. To exploit
the advantages of sampling and quantization for the purpose of making the trans-
mitted signal more robust to noise, interference and other channel degradations, we
require the use of an encoding process to translate the discrete set of sample values
to a more appropriate form of signal. Any plan for representing this discrete set of
values as a particular arrangement of discrete events is called a code. One of the dis-
crete events in a code is called a code element or symbol. For example, the presence
or absence of a pulse is a symbol. A particular arrangement of symbols used in a code
to represent a single value of the discrete set is called a code word or character.

In a binary code, each symbol may be either of two distinct values, such as a neg-
ative pulse or positive pulse. The two symbols of the binary code are customarily
denoted as 0 and 1. In practice, a binary code is preferred over other codes (e.g.,
ternary code) for two reasons:

1. The maximum advantage over the effects of noise in a transmission medium is
obtained by using a binary code, because a binary symbol withstands a relatively
high level of noise.

2. The binary code is easy to generate and regenerate.

Suppose that, in a binary code, each code word consists of R bits: the bit is an acronym
for binary digit. Then R denotes the number of bits per sample. Hence, by using such
a code, we represent a total of 2R distinct numbers. For example, a sample quantized
into one of 256 levels may be represented by an 8-bit code word.

There are several ways of establishing a one-to-one correspondence between
representation levels and code words. A convenient method is to express the ordinal
number of the representation level as a binary number. In the binary number system,
each digit has a place-value that is a power of 2, as illustrated in Table 5.2 for the case
of four bits per sample (i.e., R = 4).

REGENERATION ALONG THE TRANSMISSION PATH

The most important feature of a PCM system lies in the ability to control the effects of dis-
tortion and noise produced by transmitting a PCM signal over a channel. This capability
is accomplished by reconstructing the PCM signal by means of a chain of regenerative
repeaters located at sufficiently close spacing along the transmission route. As illustrated
in Fig. 5.13, three basic functions are performed by a regenerative repeater: equalization,
timing, and decision making. The equalizer shapes the received pulses so as to compensate
for the effects of amplitude and phase distortions produced by the transmission charac-
teristics of the channel. The timing circuitry provides a periodic pulse train, derived from
the received pulses; this is done for renewed sampling of the equalized pulses at the instants
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TABLE 5.2 Binary Number System for R = 4

Ordinal
Number of Level Number
Representation Expressed as Sum of Binary

Level Powers of 2 Number
0 0000
1 20 0001
2 21 0010
3 21 420 0011
4 2?2 0100
5 2?2 + 20 0101
6 22 4+ 21 0110
7 22 421 420 0111
8 23 1000
9 23 + 20 1001

10 23 + 2! 1010

11 23 + 21 420 1011

12 23 422 1100

13 23 422 + 20 1101

14 23 422 42! 1110

15 23 422421420 1111

of time where the signal-to-noise ratio is a maximum. The sample so extracted is com-
pared to a predetermined threshold in the decision-making device. In each bit interval, a
decision is then made on whether the received symbol is a 1 or 0 on the basis of whether
the threshold is exceeded or not. If the threshold is exceeded, a clean new pulse represent-
ing symbol 1 is transmitted to the next repeater. Otherwise, another clean new pulse rep-
resenting symbol 0 is transmitted. In this way, the accumulation of distortion and noise in
a repeater span is removed, provided the disturbance is not too large to cause an error in
the decision-making process. Ideally, except for delay, the regenerated signal is exactly the
same as the information-bearing signal that was originally transmitted. In practice, how-
ever, the regenerated signal departs from the original signal for two main reasons:

1. The unavoidable presence of channel noise and interference causes the repeater to
make wrong decisions occasionally, thereby introducing bit errors into the regener-
ated signal.

2. If the spacing between received pulses deviates from its assigned value, a jitter is intro-
duced into the regenerated pulse position, thereby causing distortion.

Distorted Amplifier- Decision-making Regenerated

PCM —> ! - ——> PCM
equalizer device
wave ‘ wave
Timing ‘

circuit

FIGURE 5.13 Block diagram of a regenerative repeater.
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OPERATIONS IN THE RECEIVER

(1) Decoding and Expanding
The first operation in the receiver is to regenerate (i.e., reshape and clean up) the
received pulses one last time. These clean pulses are then regrouped into code words
and decoded (i.e., mapped back) into a quantized PAM signal. The decoding process
involves generating a pulse whose amplitude is the linear sum of all the pulses in the
code word; each pulse is weighted by its place value (2°, 21, 22,23, ..., 2R~ 1Y in the
code, where R is the number of bits per sample.

The sequence of decoded samples represents an estimate of the sequence of
compressed samples produced by the quantizer in the transmitter. We use the term
“estimate” here to emphasize the fact that there is no way for the receiver to com-
pensate for the approximation introduced into the transmitted signal by the quantizer.
Moreover, other sources of noise include bit errors and jitter produced along the
transmission path. In order to restore the sequence of decoded samples to their cor-
rect relative level, we must, of course, use a subsystem in the receiver with a charac-
teristic complementary to the compressor, used in the transmitter. Such a subsystem
is called an expander. Ideally, the compression and expansion laws are exactly inverse
so that, except for the effect of quantization, the expander output is equal to the com-
pressor input if these two devices were connected directly. The combination of a com-
pressor and an expander is referred to as a compander.

(i1) Recomnstruction
The final operation in the receiver is to recover the message signal. This operation is
achieved by passing the expander output through a low-pass reconstruction filter
whose cutoff frequency is equal to the message bandwidth. Recovery of the message
signal is intended to signify estimation rather than exact reconstruction.

One last comment is in order. The term “modulation” in pulse-code modulation is a mis-
nomer. In reality, pulse-code modulation is a source-encoding strategy, by means of which an
analog signal emitted by a source is converted into digital form. Transmission of the digital
data so produced is another topic, the treatment of which is deferred to Chapter 6.

5.7 Delta Modulation

From the discussion presented in Section 5.6, it is apparent that the design of a pulse-code
modulation system involves many operations, which tend to make its practical implemen-
tation rather costly. To simplify the system design, we may use another digital pulse mod-
ulation technique known as delta modulation, which is considered in this section.

BASIC CONSIDERATIONS

In delta modulation (DM), an incoming message signal is oversampled (i.e., at a rate much
higher than the Nyquist rate) to purposely increase the correlation between adjacent sam-
ples of the signal. The increased correlation is done so as to permit the use of a simple
quantizing strategy for constructing the encoded signal.

In its basic form, DM provides a staircase approximation to the oversampled version of
the message signal. Unlike PCM, the difference between the input signal and its approxima-
tion is quantized into only two levels—namely, = A, corresponding to positive and negative dif-
ferences. Thus, if the approximation falls below the input signal at any sampling epoch, it is
increased by A. If, on the other hand, the approximation lies above the signal, it is diminished
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by A. Provided the input signal does not change too rapidly from sample to sample, we find
that the staircase approximation remains within *A of the input signal.

We denote the input signal by 7(¢) and its staircase approximation by 1,(¢). The
basic principle of delta modulation may then be formalized in the following set of three dis-
crete-time relations:

e(nTy) = m(nTy) — my(nT, - T) (5.27)
e,(nT;) = Asgnle(nT)] (5.28)
my(nTy) = my(nly — T) + ey(nly) (5.29)

where T; is the sampling period; e(nT;) is an error signal representing the difference between
the present sample value m(#T;) of the input signal and the latest approximation to it—
that is, m(n1;) — my(nT; — T;); and e, (nT;) is the quantized version of e(#T;); and sgnl.]
is the signum function, assuming the value +1 or —1. The quantizer output e, (nT;) is
finally encoded to produce the desired DM data.

Figure 5.14(a) illustrates the way in which the staircase approximately follows vari-
ations in the input signal 71(#) in accordance with Egs. (5.27) to (5.29), and Fig. 5.19(b)
displays the corresponding binary sequence at the delta modulator output. It is apparent
that in a delta modulation system, the rate of information transmission is simply equal to
the sampling rate f; = 1/T;.

Staircase
~— approximation
m 1)

Message
signal
m(t) —»

(a)

Binary
sequence
at modulator

output 10111101000000000111111010010101111010000000110111

(b)

FIGURE 5.14 Illustration of delta modulation. (¢) Analog waveform (¢) and its staircase
approximation #14(t). (b) Binary sequence at the modulator output.
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SYSTEM DETAILS

The principal virtue of delta modulation is its simplicity. It may be implemented by applying
a sampled version of the incoming message signal to a transmitter that consists of a com-
parator, quantizer, and accumulator connected together as shown in Fig. 5.15(a). Details of the
transmitter follow directly from Egs. (5.27) to (5.29). The comparator computes the difference
between its two inputs. The quantizer consists of a hard limiter with an input—output charac-
teristic that is a scaled version of the signum function. The accumulator operates on the quan-
tizer output so as to produce an approximation to the message signal.

Equation (5.29) is a difference equation of order one; the order refers to the fact the
present sample m2,(nT;) differs from the past sample ,(nT; — T;) by an amount equal to
the quantization error e, (77T;). Assuming that the accumulation process starts at zero time,
the solution to this equation yields the approximate result

my(nTy) = my(nT; — T;) + ey(nk)
mg(nT, = 2T) + eg(nT, — T) + eg(nT)

Il
M=

e, (iT) (5.30)
1

1

where e, (nT;) is itself related to the message sample m(nT;) by Eqgs. (5.27) and (5.28).
Thus, at the sampling instant #T;, the accumulator increments the approximation by
the increment A in a positive or negative direction, depending on the algebraic sign of the
error signal e(nT;). If the input signal m(nT;) is greater than the most recent approxima-
tion my(nT;), a positive increment +A is applied to the approximation. If, on the other
hand, the input signal is smaller, a negative increment — A is applied to the approximation.

Comparator
Sampled + e(nTy) gq(nTS) DM
input m(nT,) Xz Quantizer p—> Encoder ———— data
- sequence
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FIGURE 5.15 DM system: (@) Transmitter and (b) receiver.
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In this way, the accumulator does the best it can to track the input samples one step (of
amplitude +A or —A) at a time.

In the receiver shown in Fig. 5.15(b), the staircase approximation m14(t) is recon-
structed by passing the sequence of positive and negative pulses, produced at the decoder
output, through an accumulator in a manner similar to that used in the transmitter. The
out-of-band quantization noise present in the high-frequency staircase waveform ,(t) is
rejected by passing m1,(t) through a filter, as in Fig. 5.15(b). The filter is of a low-pass
kind, with a bandwidth equal to the original message bandwidth.

QUANTIZATION ERRORS

Delta modulation is subject to two types of quantization error: (1) slope overload distor-
tion and (2) granular noise. We first discuss the cause of slope overload distortion and then
granular noise.

We observe that Eq. (5.29) is the digital equivalent of integration in the sense that it
represents the accumulation of positive and negative increments of magnitude A. Also,
denoting the quantization error by q(nT;), as shown by

my(nT) = m(nT) + q(nT) (5.31)
we observe from Eq. (5.27) that the input to the quantizer is
e(nT) = m(nT) = m(nT, = T) — q(uT, — T) (5.32)

Thus, except for the delayed quantization error g(nT; — T;), the quantizer input is a first
backward difference of the input signal, which may be viewed as a digital approximation
to the derivative of the input signal or, equivalently, as the inverse of the digital integration
process. If we now consider the maximum slope of the original message signal m(¢), it is
clear that in order for the sequence of quantized samples {m4(nT;)} to increase as fast as
the sequence of input samples {#(nT;)} in a region of maximum slope of m(¢), we require
that the condition

(5.33)

A = max dm(t) ‘
T. dt
be satisfied. Otherwise, we find that the step size A is too small for the staircase approxi-
mation 72,(t) to follow a steep segment of the original message signal m(t), with the result
that 2,(t) falls behind 71(¢), as illustrated in Fig. 5.16. This condition is called slope over-
load. Correspondingly, the resulting quantization error is called slope-overload distortion
(noise). Note that since the maximum slope of the staircase approximation 72,4(¢) is fixed
by the step size A, increases and decreases in 772,4(t) tend to occur along straight lines, as
illustrated in the front end of Fig. 5.16. For this reason, a delta modulator using a fixed value
for the step size A is often referred to as a linear delta modulator.

Slope-overload

. . Granular noise
distortion

Staircase
approximation
my(t)

FIGURE 5.16 [Illustration of quantization errors, slope-overload
distortion and granular noise, in delta modulation.
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In contrast to slope-overload distortion, granular noise occurs when the step size A is
too large relative to the local slope characteristic of the original message signal m2(¢). This
second situation causes the staircase approximation m2,(z) to hunt around a relatively flat
segment of m(t), which is illustrated in the back end of Fig. 5.16. Granular noise in delta
modulation may be viewed as the analog of quantization noise in pulse-code modulation.

» Drill Problem 5.10 The best that a linear DM system can do is to provide a compro-
mise between slope-overload distortion and granular noise. Justify this statement. <

From this discussion we see that there is a need to have a large step size to accom-
modate a wide dynamic range, whereas a small step size is required for the accurate rep-
resentation of relatively low-level signals. It is therefore clear that if we are to choose an
optimum step size that minimizes the average power* of the quantization error in a delta
modulator, we need to make the DM system adaptive. This requirement, in turn, means that
the step size has to vary in accordance with the incoming message signal.

DELTA-SIGMA MODULATION

As mentioned previously, the quantizer input in the conventional form of delta modulation
may be viewed as an approximation to the derivative of the incoming message signal. This
behavior leads to a drawback of delta modulation in that transmission disturbances such
as noise result in an accumulative error in the demodulated signal. This drawback can be
overcome by integrating the message signal prior to delta modulation. The use of integra-
tion also has other beneficial effects:

The low-frequency content of the input signal is pre-emphasized.

Correlation between adjacent samples of the delta modulator input is increased, which
tends to improve overall system performance by reducing the average power of the
error signal at the quantizer input.

Design of the receiver is simplified.

A delta modulation system that incorporates integration at its input is called delta-
sigma modulation (D-EZM). To be more precise, however, it should be called sigma-delta
modulation, because the integration is in fact performed before the delta modulation. Nev-
ertheless, the former terminology is the one commonly used in the literature.

Figure 5.17(a) shows the block diagram of a delta-sigma modulation system. In this
diagram, the message signal #1(t) is defined in its continuous-time form, which means that
the pulse modulator now consists of a hard-limiter followed by a multiplier; the latter com-
ponent is also fed from an external pulse generator (clock) to produce a 1-bit encoded sig-
nal. The use of integration at the transmitter input clearly requires an inverse signal
emphasis—namely, differentiation—at the receiver. The need for this differentiation is,
however, eliminated because of its cancellation by integration in the conventional DM
receiver. Thus, the receiver of a delta-sigma modulation system consists simply of a low-
pass filter, as indicated in Fig. 5.17(a).

Moreover, we note that integration is basically a linear operation. Accordingly, we may
simplify the design of the transmitter by combining the two integrators 1 and 2 of
Fig. 5.17(a) into a single integrator placed after the comparator, as shown in Fig. 5.17(b).

“In statistical terms, the average power of a random process (exemplified by quantization error) is equal to the
mean-square value of that process; this issue is discussed in Chapter 8.
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FIGURE 5.17 Two equivalent versions of delta-sigma modulation system: the system shown in
part (b) of the figure is a simplified version of the system in part (a).

This latter form of implementing delta-sigma modulation is not only simpler than that of
Fig. 5.17(a), but also it provides an interesting interpretation of delta-sigma modulation as
a “smoothed” version of 1-bit pulse-code modulation. In this context, smoothing refers to
the fact that the comparator output is integrated prior to quantization, and the term 1-bit
pulse-code modulation merely restates the fact that the quantizer consists of a hard-limiter
with only two representation levels.

5.8 Differential Pulse-Code Modulation

For yet another form of digital pulse modulation, we recognize that when a voice or video
signal is sampled at a rate slightly higher than the Nyquist rate, the resulting sampled sig-
nal is found to exhibit a high degree of correlation between adjacent samples. The mean-
ing of this high correlation is that, in an average sense, the signal does not change rapidly
from one sample to the next, with the result that the difference between adjacent samples
has an average power that is smaller than the average power of the signal itself. When
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these highly correlated samples are encoded as in a standard PCM system, the resulting
encoded signal contains redundant information. Redundancy means that symbols that are
not absolutely essential to the transmission of information are generated as a result of the
encoding process. By removing this redundancy before encoding, we obtain a more efficient
encoded signal, compared to PCM.

Now, if we know a sufficient part of a redundant signal, we may infer the rest, or at
least make the most probable estimate. In particular, if we know the past behavior of a sig-
nal up to a certain point in time, it is possible to make some inference about its future val-
ues; such a process is commonly called prediction. Suppose then a message signal m () is
sampled at the rate f; = 1/7T; to produce a sequence of correlated samples T; seconds apart;
this sequence is denoted by {m(nT;)}. The fact that it is possible to predict future values
of the signal m(t) provides motivation for the differential quantization scheme shown in
Fig. 5.18(a). In this scheme, the input signal to the quantizer is defined by

e(nT) = m(nT) — #(nT)) (5.34)

which is the difference between the input sample 7#2(#T;) and a prediction of it, denoted by
m(n'T;). This predicted value is produced by using a prediction filter whose input, as we
will see, consists of a quantized version of m(#T;). The difference signal e(nT;) is called the
prediction error, since it is the amount by which the prediction filter fails to predict the
incoming message signal exactly. A simple and yet effective approach to implement the
prediction filter is to use a tapped-delay-line filter or discrete-time filter, with the basic
delay set equal to the sampling period. The block diagram of this filter is shown in Fig. 5.19,
according to which the prediction :(nT;) is modeled as a linear combination of p past
sample values of the quantized version of m(nT;), where p is the prediction order.

By encoding the quantizer output in Fig. 5.18(a), we obtain a variation of PCM,
which is known as differential pulse-code modulation (DPCM). It is this encoded signal that
is used for transmission.

Comparator
~ Sampled " e(nT,) ‘ e (nTy) DPCM
input m(nT) ) Quantizer —> Encoder ——> 4.0
7;1(”,1,) - sequence
S
+
2
+
Prediction
filter mq(nTs)
(@)
DPCM

data —> Decoder Low-pass Reconstructed

sequence filter message signal
‘ Prediction

filter

(b)

FIGURE 5.18 DPCM system: (a) Transmitter and (b) receiver.
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FIGURE 5.19 Tapped-delay line filter used as prediction filter.

The quantizer output may be expressed as
e4(nTy) = e(nTy) + q(nT) (5.35)

where g(nT;) is the quantization error. According to Fig. 5.18(a), the quantizer output
eq(nT;) is added to the predicted value 72(nT;) to produce the prediction-filter input

my(nTs) = m(nT) + ey(nT) (5.36)
Substituting Eq. (5.35) into (5.36), we get
my(nTy) = m(nTy) + e(nT) + q(nT;) (5.37)

However, from Eq. (5.34) we observe that the sum term m(nT;) + e(nT;) is equal to the
sampled message signal m(nT;). Therefore, we may rewrite Eq. (5.37) as

my(nT,) = m(nT) + q(nT,) (5.38)

which represents a quantized version of the message sample #(nT;). That is, irrespective
of the properties of the prediction filter, the quantized signal 772,(nT;) at the prediction fil-
ter input differs from the sampled message signal #1(nT;) by the quantization error g(nT;).
Accordingly, if the prediction is good, the average power of the prediction error e(nT;) will
be smaller than the average power of m(nT;), so that a quantizer with a given number of
levels can be adjusted to produce a quantization error with a smaller average power than
would be possible if m(#T;) were quantized directly using PCM.

The receiver for reconstructing the quantized version of the message signal is shown in
Fig. 5.18(b). It consists of a decoder to reconstruct the quantized error signal. The quantized
version of the original input is reconstructed from the decoder output using the same pre-
diction filter in the transmitter of Fig. 5.18(a). In the absence of channel noise, we find that
the encoded signal at the receiver input is identical to the encoded signal at the transmitter
output. Accordingly, the corresponding receiver output is equal to 72,(#1;), which differs from
the original input m(#T;) only by the quantization error g(»T;) incurred as a result of quan-
tizing the prediction error e(nT;). Finally, an estimate of the original message signal m(t) is
obtained by passing the sequence 772,(7T) through a low-pass reconstruction filter.

From the foregoing analysis we thus observe that in a noise-free environment, the
prediction filters in the transmitter and receiver operate on the same sequence of samples,
{m4(nT;)}. With this very purpose in mind, a feedback path is added to the quantizer in
the transmitter, as shown in Fig. 5.18(a).

Differential pulse-code modulation includes delta modulation as a special case. In
particular, comparing the DPCM system of Fig. 5.18 with the DM system of Fig. 5.15, we
see that they are basically similar, except for two important differences:

The use of a one-bit (two-level) quantizer in the DM system.

Replacement of the prediction filter in the DPCM by a single delay element (i.e., zero
prediction order).
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In other words, DM is the 1-bit version of DPCM. Note, however, that unlike a PCM sys-
tem, the transmitters of both the DPCM and DM involve the use of feedback.
Insofar as noise is concerned, we may finally make the following two statements:

1. DPCM, like DM, is subject to slope-overload distortion whenever the input signal
changes too rapidly for the prediction filter to track it.

2. Like PCM, DPCM suffers from quantization noise.

» Drill Problem 5.11 Justify the two statements just made on sources of noise in a DPCM
system. <

5.9 Line Codes

In reality, PCM, DM, and DPCM represent different strategies for source encoding, whereby
an analog signal is converted into digital form. However, all three of them share a common
feature: once a binary sequence of 1s and Os is produced, a line code is needed for electri-
cal representation of that binary sequence. There are several line codes that can be used for
this representation, as summarized here:

1. On-off signaling, in which symbol 1 is represented by transmitting a pulse of constant
amplitude for the duration of the symbol, and symbol 0 is represented by switching
off the pulse, as in Fig. 5.20(a).

2. Nonreturn-to-zero (NRZ) signaling, in which symbols 1 and 0 are represented by
pulses of equal positive and negative amplitudes, as illustrated in Fig. 5.20(b).

3. Return-to-zero (RZ) signaling, in which symbol 1 is represented by a positive rec-
tangular pulse of half-symbol width, and symbol 0 is represented by transmitting 7o
pulse, as illustrated in Fig. 5.20(c).

4. Bipolar return-to-zero (BRZ) signaling, which uses three amplitude levels as indi-
cated in Fig. 5.20(d). Specifically, positive and negative pulses of equal amplitude are
used alternately for symbol 1, and no pulse is always used for symbol 0. A useful
property of BRZ signaling is that the power spectrum of the transmitted signal has
no dc component and relatively insignificant low-frequency components for the case
when symbols 1 and 0 occur with equal probability.

5. Split-phase (Manchester code), which is illustrated in Fig. 5.20(e). In this method of
signaling, symbol 1 is represented by a positive pulse followed by a negative pulse,
with both pulses being of equal amplitude and half-symbol width. For symbol 0, the
polarities of these two pulses are reversed. The Manchester code suppresses the dc
component and has relatively insignificant low-frequency components, regardless of
the signal statistics.

6. Differential encoding, in which the information is encoded in terms of signal transi-
tions, as illustrated in Fig. 5.20(f). In the example of the binary PCM signal shown
in the figure, a transition is used to designate symbol 0, whereas no transition is used
to designate symbol 1. It is apparent that a differentially encoded signal may be
inverted without affecting its interpretation. The original binary information is recov-
ered by comparing the polarity of adjacent symbols to establish whether or not a
transition has occurred. Note that differential encoding requires the use of a reference
bit, as indicated in Fig. 5.20 (f).

The waveforms shown in parts (@) to (f) of Fig. 5.20 are drawn for the binary data stream
01101001. It is important, to note that rectangular pulse-shaping is used to draw these
waveforms, largely to simplify the electrical representation. The benefits of using other
pulse shapes for the transmission of PCM data are discussed in Chapter 6.
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Binary data
0 1 1 0 1 0 0 1

(a)

(b)

(©)

(d

(e)

A —

Reference bit

——> Time

()

FIGURE 5.20 Line codes. (@) On—off signaling. (b) Nonreturn-to-zero signaling. (c) Return-to-
zero signaling. (d) Bipolar return-to-zero signaling. (e) Split-phase or Manchester encoding.
(/) Differential encoding,.

5.10 Theme Examples

TIME-DI1visioN MULTIPLEXING

The sampling theorem provides the basis for transmitting the information contained in a
band-limited message signal () as a sequence of samples of m(#) taken uniformly at a
rate that is usually slightly higher than the Nyquist rate. An important feature of the sam-
pling process is a conservation of time. That is, the transmission of the message samples
engages the communication channel for only a fraction of the sampling interval on a peri-
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FIGURE 5.21 Block diagram of TDM system.

odic basis, and in this way some of the time interval between adjacent samples is cleared
for use by other independent message sources on a time-shared basis. We thereby obtain a
time-division multiplex (TDM) system, which enables the joint utilization of a common com-
munication channel by a plurality of independent message sources without mutual inter-
ference among them.

The concept of TDM is illustrated by the block diagram shown in Fig. 5.21. Each input
message signal is first restricted in bandwidth by a low-pass anti-aliasing filter to remove
the frequencies that are nonessential to an adequate signal representation. The low-pass fil-
ter outputs are then applied to a commutator, which is usually implemented using electronic
switching circuitry. The function of the commutator is twofold: (1) to take a narrow sam-
ple of each of the N input messages at a rate f; that is slightly higher than 2W, where W is
the cutoff frequency of the anti-aliasing filter, and (2) to sequentially interleave these N
samples inside the sampling interval T;. Indeed, this latter function is the essence of the
time-division multiplexing operation.

Following the commutation process, the multiplexed signal is applied to a pulse mod-
ulator, the purpose of which is to transform the multiplexed signal into a form suitable for
transmission over the common channel. It is clear that the use of time-division multiplex-
ing introduces a bandwidth expansion factor N, because the scheme must squeeze N sam-
ples derived from N independent message sources into a time slot equal to one sampling
interval. At the receiving end of the system, the received signal is applied to a pulse demod-
ulator, which performs the reverse operation of the pulse modulator. The narrow samples
produced at the pulse demodulator output are distributed to the appropriate low-pass
reconstruction filters by means of a decommutator, which operates in synchronism with the
commutator in the transmitter. This synchronization is essential for a satisfactory opera-
tion of the system. The way this synchronization is implemented depends naturally on the
method of pulse modulation used to transmit the multiplexed sequence of samples.

The TDM system is highly sensitive to dispersion in the common channel—that is, a
non-constant magnitude response of the channel and a nonlinear phase response, both
being measured with respect to frequency. Accordingly, equalization of both magnitude
and phase responses of the channel is necessary so as to ensure a satisfactory operation of
the system; in effect, equalization compensates for dispersion in the channel. (The subject
of channel equalization is discussed in Chapter 6.) However, unlike frequency-division
multiplexing (FDM) considered in Chapter 3, to a first-order approximation TDM is
immune to nonlinearities in the channel as a source of cross-talk. The reason for this behav-
ior is that different message signals are not simultaneously applied to the channel.
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Synchronization

In applications using PCM, for example, it is natural to multiplex different messages
sources by time division, whereby each source keeps its distinction from all other sources
throughout the journey from the transmitter to the receiver. This individuality accounts
for the comparative ease with which message sources may be dropped or reinserted in a time-
division multiplex system. As the number of independent message sources is increased, the
time interval that may be allotted to each source has to be reduced, since all of them must
be accommodated into a time interval equal to the reciprocal of the sampling rate. This,
in turn, means that the allowable duration of a codeword representing a single sample is
reduced. However, pulses tend to become more difficult to generate and to transmit as
their duration is reduced. Furthermore, if the pulses become too short, impairments in the
transmission medium begin to interfere with the proper operation of the system. Accord-
ingly, in practice, it is necessary to restrict the number of independent message sources that
can be included within a time-division group.

In any event, for a PCM system with time-division multiplexing to operate satisfac-
torily, it is necessary that the timing operations at the receiver, except for the time lost in
transmission and regenerative repeating, follow closely the corresponding operations at
the transmitter. In a general way, this amounts to requiring a local clock at the receiver to
keep the same time as a distant standard clock at the transmitter, except that the local clock
is delayed by an amount equal to the time required to transport the message signals from
the transmitter to the receiver. This delay, in turn, gives rise to a phase difference between
the two clocks. One possible procedure to synchronize the transmitter and receiver clocks
is to set aside a code element or pulse at the end of a frame (consisting of a code word
derived from each of the independent message sources in succession) and to transmit this
pulse every other frame only. In such a case, the receiver includes a circuit that would search
for the pattern of 1s and Os alternating at half the frame rate, and thereby establish syn-
chronization between the transmitter and receiver.

When the transmission path is interrupted, it is highly unlikely that the transmitter
and receiver clocks will continue to indicate the same time for long. Accordingly, in carry-
ing out a synchronization process, we must set up an orderly procedure for detecting the
synchronizing pulse. The procedure consists of observing the code elements one by one
until the synchronizing pulse is detected. That is, after observing a particular code element
long enough to establish the absence of the synchronizing pulse, the receiver clock is set back
by one code element and the next code element is observed. This searching process is
repeated until the synchronizing pulse is detected. Clearly, the time required for synchro-
nization depends on the epoch at which proper transmission is re-established.

EXAMPLE 5.1 The T1 System

In this example, we describe the important characteristics of a PCM system known as the T1
system, which carries 24 voice channels over pairs of wires with regenerative repeaters spaced
at approximately 2-km intervals. The T1 carrier system is basic to the North American digi-
tal switching hierarchy® for telephonic communication.

A voice signal (male or female) is essentially limited to a band from 300 to 3100 Hz
in that frequencies outside this band do not contribute much to voice recognition and
comprehension. Indeed, telephone circuits that respond to this range of frequencies give

SFor a description of the digital switching hierarchy used in North America, see Haykin (2001), pp. 214-217.
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quite satisfactory service. Accordingly, it is customary to pass the voice signal through a
low-pass filter with a cutoff frequency of about 3.1 kHz prior to sampling. Hence, with
W = 3.1 kHz, the nominal value of the Nyquist rate is 6.2 kHz. The filtered voice signal is
usually sampled at a slightly higher rate—namely, 8 kHz—which is the standard sampling
rate in telephone systems.

For companding, the T1 system uses a piecewise-linear characteristic (consisting of 15
linear segments) to approximate the logarithmic u-law of Eq. (5.23) with the constant u = 255.
This approximation is constructed in such a way that the segment end points lie on the com-
pression curve computed from Eq. (5.23), and their projections onto the vertical axis are spaced
uniformly.

There are a total of 255 representation levels associated with the 15-segment com-
panding law. To accommodate this number of representation levels, each of the 24 voice
channels uses a binary code with an 8-bit word. The first bit indicates whether the input
voice sample is positive or negative; this bit is a 1 if positive and a 0 if negative. The next
three bits of the code word identify the particular segment inside which the amplitude of
the input voice sample lies, and the last four bits identify the actual representation level inside
that segment.

With a sampling rate of 8 kHz, each frame of the T1 multiplexed signal occupies a period
of 125 us. In particular, it consists of twenty-four 8-bit words, plus a single bit that is added
at the end of the frame for the purpose of synchronization. Hence, each frame consists of a total
of (24 X 8) + 1 = 193 bits. Correspondingly, the duration of each bit equals 0.647 us, and
the resulting transmission rate is 1.544 megabits per second (Mb/s).

IMPULSE RADIO

Traditional digital transmission systems attempt to minimize the bandwidth of the trans-
mitted signal. Hence, filtering is often applied to rectangular pulses to reduce the occupied
bandwidth. However, a method that does not follow this philosophy and has captured
attention recently is known as impulse radio. With this technique, information is sent by
means of very narrow pulses that are widely separated in time. Since the pulse widths are
very narrow, the spectrum of the resulting signal is very broad; consequently, this tech-
nique is a form of ultra-wideband (UWB) radio transmission, which forms the subject of
our third and last theme example.

Specifically, one type of pulse used for impulse radio is the Gaussian monocycle. This
pulse shape is the derivative of the scaled Gaussian pulse g(¢) = exp(—t?) discussed in
Chapter 2. The waveform of the Gaussian monocycle is given by

u(t) = AC) exp{—w(f_)z} (5.39)

where A is an amplitude scale factor and 7 is the time constant of the pulse. This signal is
depicted in Fig. 5.22. It consists of a positive lobe followed by a negative lobe, with a pulse
width of approximately 7. For impulse radio applications, the pulse width 7 is typically
between 0.20 and 1.50 nanoseconds.

The spectrum of a sequence of these pulses can be obtained from the Fourier trans-
form of an individual pulse and this spectrum is shown in Fig. 5.23. The frequency axis in
Fig. 5.23 has been normalized in terms of the time constant 7; for 7 = 1.0 nanosecond, this
frequency axis ranges from 0 to 4 GHz.
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Gaussian monocycle used for impulse radio.

There are several methods for digitally modulating such an impulse wave. One method
is pulse-position modulation as depicted in Fig. 5.24. (Pulse-position modulation was
considered in Section 5.3.) With this method, there is a nominal time separation T}, between
successive pulses. To transmit binary signal 0, the pulse is transmitted slightly early, at time
t = —T.. To transmit binary signal 1, the pulse is transmitted slightly late at time ¢t = +T.
The receiver detects this early/late timing and demodulates the data accordingly. Typical sep-
arations between pulses (i.e., T,) range from 25 nanoseconds to 1000 nanoseconds, result-
ing in a range of data rates from 40 Mbits/s to 1 Mbit/s.

The ultra-wideband nature of the modulated signal has both good and bad aspects.
Since the signal power is spread over a large bandwidth, the amount of power that falls in
any particular narrowband channel is small, which is good. However, the power falls in all
such narrowband channels, which is bad. In particular, there is the concern that ultra-wide-
band radios will cause harmful interference into existing narrowband radio services occu-
pying the same radio spectrum. As a consequence, although ultra-wideband radio has been
allowed in various jurisdictions, there are strict limits on the power spectra that may be
transmitted. Due to this limitation on transmit power, ultra-wideband radio is restricted to
short-range applications, typically less than a few hundred meters.®
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FIGURE 5.24 Pulse-position modulation of impulse radio.

SFor more detailed discussions of ultra-wideband radio, see the following two references: Win and Scholtz (1998)
and Cassioli, Win, and Molisch (2002).
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5.11 Summary and Discussion

In this chapter, we introduced two fundamental and complementary processes:

Sampling, which operates in the time domain; the sampling process is the link between
an analog waveform and its discrete-time representation.

Quantization, which operates in the amplitude domain; the quantization process is
the link between an analog waveform and its discrete-amplitude representation.

The sampling process builds on the sampling theorem, which states that a strictly band-lim-
ited signal with no frequency components higher than W Hz is represented uniquely by a
sequence of samples taken at a uniform rate equal to or greater than the Nyquist rate of
2 W samples per second. As for the quantization process it exploits the fact that any human
sense, as ultimate receiver, can only detect finite intensity differences.

The sampling process is basic to the operation of all pulse modulation systems, which
may be classified into analog pulse modulation and digital pulse modulation. The distin-
guishing feature between them is that analog pulse modulation systems maintain a con-
tinuous amplitude representation of the message signal, whereas digital pulse modulation
systems employ quantization to provide a representation of the message signal that is
discrete in both time and amplitude.

Analog pulse modulation results from varying some parameter of the transmitted
pulses, such as amplitude, duration, or position, in which case we speak of pulse-amplitude
modulation (PAM), pulse-duration modulation (PDM), or pulse-position modulation (PPM),
respectively.

Digital pulse modulation systems, on the other hand, transmit analog message signals
as a sequence of coded pulses, which is made possible through the combined use of sam-
pling and quantization. Pulse-code modulation is a form of digital pulse modulation that
is endowed with some unique system advantages, which, in turn, have made it the pre-
ferred method of encoding for the transmission of such analog signals as voice and video
signals. The advantages of pulse-code modulation include robustness to noise and inter-
ference, efficient regeneration of the encoded pulses along the transmission path, and a
uniform format for different kinds of message signals. (i.e. voice, video, and data).

Delta modulation and differential pulse-code modulation are two other useful forms
of digital pulse modulation. The principal advantage of delta modulation is simplified cir-
cuitry. However, this advantage is gained at the expense of increased data transmission
rate. In contrast, differential pulse-code modulation employs increased circuit complexity
to improve system performance. The improvement is achieved at the expense of increased
system complexity, which facilitates the idea of prediction to remove redundant symbols
from the incoming data stream, and thereby permit the use of reduced channel bandwidth
compared to PCM.

Further improvements in the operations of delta modulation and differential pulse-
code modulation can be made through the use of adaptivity to account for statistical vari-
ations in the input data. Specifically, adaptivity is used in delta modulation to improve
noise performance. On the other hand, adaptivity is used in differential pulse-code modu-
lation to reduce bandwidth requirement.

It is important to recognize that pulse modulation techniques are lossy in the sense that
some information is lost as a result of the signal representation that they perform. For exam-
ple, in pulse-amplitude modulation, the customary practice is to use anti-alias (low-pass) fil-
tering prior to sampling; in so doing, information is lost by virtue of the fact that high-frequency
components considered to be unessential are removed by the filter. The lossy nature of pulse
modulation is most vividly seen in pulse-code modulation that is impaired by quantization
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noise (i.e., distortion), which arises because the transmitted sequence of encoded pulses does
not have the infinite precision needed to represent continuous samples exactly. Nevertheless,
the loss of information incurred by the use of a pulse modulation process is under the designer’s
control, in that it can be made small enough for it to be nondiscernible by the end user.

A point that needs to be stressed one last time: In reality, PCM, DM, and DPCM are
source-encoding strategies, whose purpose is to convert analog signals into digital form. For
actual transmission of the encoded data over a communication channel, the discrete form
of pulse-amplitude modulation (PAM) is typically used. (Details of this application of PAM
are presented in the next chapter).

In the chapter, we also included three theme examples, addressing important appli-
cations summarized here:

Time-division multiplexing, which enables the joint utilization of a communication
channel by a multitude of independent message sources by building on an important
feature of the sampling process—namely, the conservation of time.

The T1 system, which accommodates the PCM transmission of 24 voice channels over
pairs of wires with regenerative repeaters spaced at approximately 2-km intervals.

Impulse radio, by means of which information is sent across a wireless channel at base-
band, using very narrow pulses.

ADDITIONAL PROBLEMS

5.12

5.13

5.14

5.15

(a) Plot the spectrum of a PAM wave produced by the modulating signal
m(t) = A, cos(2mf,t)

assuming the modulation frequency f,, = 0.2 Hz, sampling period T, = 1s, and pulse
duration

T = 0.45s

(b) Using an ideal reconstruction filter, plot the spectrum of the filter output. Compare this
result with the output that would be obtained if there were no aperture effect.

In this problem, we evaluate the equalization needed for the aperture effect in a PAM system.
The operating frequency f = f,/2, which corresponds to the highest frequency component of the
message signal for a sampling rate equal to the Nyquist rate. Plot 1/sinc(0.5T/T;) versus T/T;,
and hence find the equalization needed when T/T, = 0.25.

A PAM telemetry system involves the multiplexing of four input signals: s;(¢),7 = 1, 2, 3, 4.
Two of the signals s1(#) and s,(¢) have bandwidths of 80 Hz each, whereas the remaining two
signals s3(2#) and s4(#) have bandwidths of 1 kHz each. The signals s3(¢) and s4(#) are each sam-
pled at the rate of 2400 samples per second. This sampling rate is divided by 2R (i.e., an inte-
ger power of 2) in order to derive the sampling rate for s1(¢) and s,(2).

(a) Find the maximum value of R.

(b) Using the value of R found in part (a), design a multiplexing system that first multiplexes

s1(2) and s, () into a new sequence, ss5(t), and then multiplexes s3(¢), s4(t), and s5(#).

(a) A sinusoidal signal with an amplitude of 3.25 volts is applied to a uniform quantizer of the
midtread type whose output takes on the values 0, =1, =2, *+3 volts. Sketch the wave-
form of the resulting quantizer output for one complete cycle of the input.

(b) Repeat this evaluation for the case when the quantizer is of the midrise type whose output
takes on the values =0.5, =1.5, +2.5, £3.5 volts.
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Consider the following sequences of 1s and Os:

(a) An alternating sequence of 1s and Os.

(b) A long sequence of 1s followed by a long sequence of 0s.

(c) A long sequence of 1s followed by a single 0 and then a long sequence of 1s.

Sketch the waveform for each of these sequences using the following methods of representing
symbols 1 and 0:

(a) On-—off signaling.
(b) Bipolar return-to-zero signaling.
The sinusoidal wave
m(t) = 6 sin(2mt) volts

is transmitted using a 4-bit binary PCM system. The quantizer is of the midrise type, with a step size
of 1 volt. Sketch the resulting PCM wave for one complete cycle of the input. Assume a sampling
rate of four samples per second, with samples taken at# = *=1/8, +3/8, =5/8, ..., seconds.

Consider a compact disc that uses pulse-code modulation to record audio signals whose band-
width W = 15 kHz. Specifications of the modulator include the following:

Quantization: uniform with 512 levels
Encoding: binary
Determine (a) the Nyquist rate, and (b) the minimum permissible bit rate.

This problem addresses the digitization of a television signal using pulse-code modulation. The
signal bandwidth is 4.5 MHz. Specifications of the modulator include the following:

Sampling: 15% in excess of the Nyquist rate
Quantization: uniform with 1024 levels
Encoding: binary

Determine (a) the Nyquist rate, and (b) the minimum permissible bit rate.

Figure 5.25 shows a PCM signal in which the amplitude levels of +1 volt and —1 volt are used
to represent binary symbols 1 and 0, respectively. The code word used consists of three bits. Find
the sampled version of an analog signal from which this PCM signal is derived.

4" }17 Tb

FIGURE 5.25 Problem 5.20

Consider a sinusoidal wave of frequency f,, and amplitude A,,,, applied to a delta modulator of
step size A. Show that slope-overload distortion will occur if
A
A, >
" 2af, T,

where T; is the sampling period. What is the maximum power that may be transmitted with-
out slope-overload distortion?

Consider a delta modulation (DM) system used to transmit a voice signal, which is uniformly
sampled at the rate of 64 kHz. Assume the following specifications:
Voice signal bandwidth = 3.1 kHz
Maximum signal amplitude = 10 volts
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(a) To avoid slope overload distortion, what is the minimum permissible value of the step size
A used in the system?

(b) Determine the average power of granular noise.

(c) Determine the minimum-channel bandwidth needed to transmit the DM encoded data.
Repeat Problem 5.22, this time using a sinusoidal wave of frequency = 3.1 kHz and peak
amplitude = 10 volts.

In the DPCM system depicted in Fig. 5.26, show that in the absence of channel noise, the trans-
mitting and receiving prediction filters operate on slightly different input signals.

Input .
m(’IZ)Ts) ’ Z —> Quzgtclgzrefnd > Channel ——> Decoder y X, o— Output
mnT) - : : +
| |
Prediction : : L Prediction
filter | | filter
~<~————— Transmitter —»: : Receiver

FIGURE 5.26 Problem 5.24
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5.25

5.26

5.27

(a) Given any physical signal, it is not possible to sample the signal without impairment due to
the aliasing phenomenon.

(b) The best that a designer can do is to manage the aliasing problem in such a way that the
impairment is not discernible by a human user.

Justify the validity of these two statements.

In natural sampling, an analog signal g(#) is multiplied by a periodic train of rectangular pulses

¢(t). Given that the pulse-repetition frequency of this periodic train is f; and the duration of each

rectangular pulse is T (with 4T >> 1), do the following:

(a) Find the spectrum of the signal s(#) that results from the use of natural sampling; you may
assume that # = 0 corresponds to the midpoint of a rectangular pulse in ¢(2).

(b) Show that the original signal g(#) may be recovered exactly from its naturally sampled ver-
sion, provided that the conditions embodied in the sampling theorem are satisfied.

Figure 5.27 shows the block diagram of a bipolar chopper. The chopper has two parallel paths,

one direct and the other inverting. The commutator at the output switches back and forth

between these two paths at a frequency denoted by f;. The chopper produces an output signal

y(2) in response to the input signal x(z).

Input l Output
x(t) —>—e _Tj<_> y(#)
L—— Inverter fs

FIGURE 5.27 Problem 5.27

(a) Determine y(#) in terms of x(2).
(b) Given that X(f) is the Fourier transform of x(t), determine the Fourier transform of y(#).
Use graphical displays to illustrate your answers.



5.28

5.29

5.30

Advanced Problems 229

Figure 5.28 shows a subsystem consisting of an instantaneous sampler followed by a synthesis
filter, which is used in a sampling oscilloscope. The subsystem is designed to exploit the alias-
ing phenomenon for the expanded display of arbitrary periodic signals. Assume that the input
periodic signal x(#) has been prefiltered (not shown in Fig. 5.28) to suppress all frequency com-
ponents higher than the mth harmonic.

Input periodic Instantaneous (*(T9)}  Synthesis Output periodic
signal x(z) sampler > filter > signal y(t)

FIGURE 5.28 Problem 5.28

Specifically, the input periodic signal x(#) is sampled at a rate f; slightly smaller than its
fundamental frequency f;, as shown by

fs =1 = a)fo
where the factor 4 lies in the interval 0 < a < 1. In so doing, aliasing is purposely introduced
into the composition of the sample sequence {x(nT;)}, where n = 0, =1, *2,..., and
T, = 1/f;. The sequence {x(#nT,)} is next processed by the low-pass synthesis filter of cutoff
frequency B = f;/2, thereby producing the output periodic signal y(z).
Use graphical plots to illustrate the relationships between x(#) and y(#) and their respec-
tive spectra X(f) and Y(f), and include the following:

(a) Show that the output signal is an expanded version of the input signal, as shown by
y(2) = x(az)
(b) To prevent spectral overlap, the expansion factor a must satisfy the condition

1

<7
TS m 1

(c) The spectrum Y(f) contains a compressed image of the spectrum X(f).

In a television set, the video signal is produced by capturing 60 still frames of a scene per sec-
ond; hence, the sampling period of the video signal is T; = 1/60 second. This means that a
given point on the television screen is actually dark most of the time; the point is lit periodically
every 1/60 second. The light emitted by the television set makes for an interesting experiment
on the aliasing phenomenon experienced in uniform sampling of the complex sinusoid
exp(j2mft).

Suppose that the television screen is masked off, except for a narrow horizontal strip, and
we sit with our back to the television. To see what is happening on the television, we use a mir-
ror that rotates counterclockwise about the horizontal axis. Demonstrate the following two
possible results:

(a) The horizontal strip will appear still if the rotation speed of the mirror matches the sampling
rate of the video signal.

(b) Otherwise, the horizontal strip on the television screen will appear in the mirror as though
it is rotating backwards.

(Note: The experiment described in Problem 5.29 shows how a television set can be used to

demonstrate the way in which a device called the stroboscope works.)

In Section 5.2, we discussed the interpolation of a sample sequence based on the sample-and-

hold filter. In the control literature, this interpolation filter is referred to as the zero-order hold.

A more complex interpolation filter called the first-order hold may be preferred to the zero-order

hold. As the name implies, the first-order hold performs interpolation between data points by

a first-order polynomial—namely, a straight line.

Figure 5.29 depicts the impulse response h(t) of a first-order hold filter to a pulse of unit
amplitude and duration T.
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(a) Show that the frequency response of the first-order hold filter is given by

1 — exp(—27@fT
) - (L=t

(b) Plot the magnitude and phase responses of the first-order hold filter, and compare them to
the sample-and-hold filter.

(c) Determine the transfer function of the equalizer that needs to be cascaded with the first-order
hold filter for perfect reconstruction of the message signal. Compare your result with the
equalization needed for the sample-and-hold filter for a duty cycle (T/T;) = 0.1. Com-
ment on your results.

))2(1 + j2mfT)

(d) Plot the response of the first-order hold filter to the sinusoidal input cos(50¢#), assuming
fe = 100 Hz and T = 0.01. Compare your result with that produced by the sample-and-
hold filter. Here again, comment on what the comparison teaches us.

2T

0 Time ¢
T
FIGURE 5.29 Problem 5.30

In this problem, we address derivation of the Gaussian monocycle v(¢) of Eq. (5.39) and its
spectrum plotted in Fig. 5.23.
To be specific, consider the unit Gaussian pulse

g(t) = exp(—mt?)

which is its own Fourier transform, as shown by

G(f) = exp(~f?)
(For details of this Fourier-transform pair, see Example 2.6).
Differentiating g(#) with respect to time ¢, we get the corresponding Gaussian monocycle

g () = —2mt exp(—mt?)

where the prime signifies differentiation.

(a) Applying the linearity and dilation properties of the Fourier transform to g'(¢), derive the
v(2) of Eq. (5.39). What is the value of parameter A of the pulse in Fig. 5.22?

(b) Building on the results of part (a) and making use of the differentiation property of the
Fourier transform, derive the formula used to plot the spectrum of v(#) shown in Fig. 5.23.

The properties of the Fourier transform referred to in parts (a) and (b) are discussed in Chapter 2.



CHAPTER 6

BASEBAND DATA
TRANSMISSION

The transmission of digital data (regardless of their origin) over a physical communication
channel is limited by two unavoidable factors:

1. Intersymbol interference, which arises due to imperfections in the frequency response
of the channel.

2. Channel noise, which refers to unwanted electric signals that arise at the channel out-
put due to random and unpredictable physical phenomena.

In this chapter, we focus attention on the intersymbol interference problem. The discussion
of noise in digital communication receivers is deferred to the latter part of the book.

As the name implies, intersymbol interference refers to interference caused by the
time response of the channel spilling over from one symbol into adjacent symbols. Inter-
symbol interference is troublesome because it has the effect of introducing deviations (i.e.,
errors) between the data sequence reconstructed at the receiver output and the original
data sequence applied to the transmitter input. Hence, unless corrective measures are
taken, intersymbol interference could impose a limit on the attainable rate of data trans-
mission across the channel, which is below the physical capability of the channel.

With intersymbol interference acting as an issue of practical concern, we will study an
important corrective measure to deal with it—namely, baseband pulse shapin